
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/373680026

Automated Generation of Digital Models for Production Lines Through State

Reconstruction

Preprint · August 2023

CITATIONS

0
READS

57

3 authors, including:

Giovanni Lugaresi

KU Leuven

44 PUBLICATIONS 237 CITATIONS

SEE PROFILE

Andrea Matta

Politecnico di Milano

220 PUBLICATIONS 3,269 CITATIONS

SEE PROFILE

All content following this page was uploaded by Giovanni Lugaresi on 05 September 2023.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/373680026_Automated_Generation_of_Digital_Models_for_Production_Lines_Through_State_Reconstruction?enrichId=rgreq-6acb4c490a3ae1a916199a27128a87af-XXX&enrichSource=Y292ZXJQYWdlOzM3MzY4MDAyNjtBUzoxMTQzMTI4MTE4NjQ2NTIyNEAxNjkzOTIzODU2NDcx&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/373680026_Automated_Generation_of_Digital_Models_for_Production_Lines_Through_State_Reconstruction?enrichId=rgreq-6acb4c490a3ae1a916199a27128a87af-XXX&enrichSource=Y292ZXJQYWdlOzM3MzY4MDAyNjtBUzoxMTQzMTI4MTE4NjQ2NTIyNEAxNjkzOTIzODU2NDcx&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-6acb4c490a3ae1a916199a27128a87af-XXX&enrichSource=Y292ZXJQYWdlOzM3MzY4MDAyNjtBUzoxMTQzMTI4MTE4NjQ2NTIyNEAxNjkzOTIzODU2NDcx&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giovanni-Lugaresi?enrichId=rgreq-6acb4c490a3ae1a916199a27128a87af-XXX&enrichSource=Y292ZXJQYWdlOzM3MzY4MDAyNjtBUzoxMTQzMTI4MTE4NjQ2NTIyNEAxNjkzOTIzODU2NDcx&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giovanni-Lugaresi?enrichId=rgreq-6acb4c490a3ae1a916199a27128a87af-XXX&enrichSource=Y292ZXJQYWdlOzM3MzY4MDAyNjtBUzoxMTQzMTI4MTE4NjQ2NTIyNEAxNjkzOTIzODU2NDcx&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/KU_Leuven?enrichId=rgreq-6acb4c490a3ae1a916199a27128a87af-XXX&enrichSource=Y292ZXJQYWdlOzM3MzY4MDAyNjtBUzoxMTQzMTI4MTE4NjQ2NTIyNEAxNjkzOTIzODU2NDcx&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giovanni-Lugaresi?enrichId=rgreq-6acb4c490a3ae1a916199a27128a87af-XXX&enrichSource=Y292ZXJQYWdlOzM3MzY4MDAyNjtBUzoxMTQzMTI4MTE4NjQ2NTIyNEAxNjkzOTIzODU2NDcx&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrea-Matta-2?enrichId=rgreq-6acb4c490a3ae1a916199a27128a87af-XXX&enrichSource=Y292ZXJQYWdlOzM3MzY4MDAyNjtBUzoxMTQzMTI4MTE4NjQ2NTIyNEAxNjkzOTIzODU2NDcx&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrea-Matta-2?enrichId=rgreq-6acb4c490a3ae1a916199a27128a87af-XXX&enrichSource=Y292ZXJQYWdlOzM3MzY4MDAyNjtBUzoxMTQzMTI4MTE4NjQ2NTIyNEAxNjkzOTIzODU2NDcx&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Politecnico_di_Milano?enrichId=rgreq-6acb4c490a3ae1a916199a27128a87af-XXX&enrichSource=Y292ZXJQYWdlOzM3MzY4MDAyNjtBUzoxMTQzMTI4MTE4NjQ2NTIyNEAxNjkzOTIzODU2NDcx&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrea-Matta-2?enrichId=rgreq-6acb4c490a3ae1a916199a27128a87af-XXX&enrichSource=Y292ZXJQYWdlOzM3MzY4MDAyNjtBUzoxMTQzMTI4MTE4NjQ2NTIyNEAxNjkzOTIzODU2NDcx&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giovanni-Lugaresi?enrichId=rgreq-6acb4c490a3ae1a916199a27128a87af-XXX&enrichSource=Y292ZXJQYWdlOzM3MzY4MDAyNjtBUzoxMTQzMTI4MTE4NjQ2NTIyNEAxNjkzOTIzODU2NDcx&el=1_x_10&_esc=publicationCoverPdf

Automated Generation of Digital Models for Production Lines through
State Reconstruction

Lulai Zhu1, Giovanni Lugaresi2 and Andrea Matta1

Abstract— Thanks to the rapid advances in information
technologies, digital twins have been widely adopted in the
manufacturing industry to support production planning and
control. At the core of a digital twin is a digital model that
mirrors the physical system in a virtual space. It is inefficient
to develop digital twins by modeling the considered systems
manually. Although significant research effort has been made to
automate the generation of digital models, most approaches so
far impose strong assumptions on the available data or cannot
precisely capture the behavior of the physical system. Noticing
the current gap, we propose in this paper a novel approach for
automatically generating a graph representation of a production
line from an event log through state reconstruction. The
feasibility of the proposed approach has been demonstrated
on three simulated instances.

I. INTRODUCTION
In era of Industry 4.0, manufacturers are continuously

embracing cutting-edge information technologies such as
Internet of Things, cloud computing, big data and artificial
intelligence [1]. These constitute a rich technology stack
to develop and deploy digital twins for production lines.
As high-fidelity virtual replicas of physical systems, digital
twins facilitate a diversity of collaborative services that could
enhance day-to-day operations and achieve a higher produc-
tivity [2]. A large enterprise, for example an automaker, may
have up to thousands of production lines [3]. Building a
digital model—the most basic component of a digital twin—
for each production line is a time-consuming and error-prone
task, which necessitates automatic model generators.

A model generator is a tool for interpreting the topology
and behavior of a physical system into code, thereby allowing
a computer to undertake the job of a human modeler [4].
In the context of manufacturing, model generation entails
recognizing the characteristics of individual machines and
their logical relationships, e.g. spatial constraints, temporal
statistics and scheduling policies [5], [6]. If a model gener-
ator is deployed across the life cycle of a production line,
the addition or removal of a machine can be reflected in the
digital model promptly [7], [8].

Recent approaches take advantage of process mining [9]
to generate digital models from historic data. Process mining
is a field of inquiry devoted to discovering, validating and

*This work was supported by the European Union’s Horizon
Europe research and innovation program under grant agreement
No. 101092021 (AUTO-TWIN)

1Lulai Zhu and Andrea Matta are with the Department of Mechanical
Engineering, Politecnico di Milano, Via La Masa 1, Milano 20156, Italy
{lulai.zhu,andrea.matta}@polimi.it

2Giovanni Lugaresi is with CentraleSupélec, Université Paris-
Saclay, 3 Rue Joliot Curie, 91190 Gif-sur-Yvette, France
giovanni.lugaresi@centralesupelec.fr

improving operational processes based on event logs accessi-
ble in information systems. It is agnostic with respect to the
application domain and has proven effective on a plethora
of data sets. Some key performance indicators like average
flow times can be evaluated directly with processing mining
techniques.

To extend the framework introduced in [10], we propose
a new approach that automates the generation of a graph
model for a production line from an event log through state
reconstruction. The novelty of the approach lies in its ability
to reconstruct the trajectory of the system state along the
event log, which affords an overall insight into the system
at any point in time. As a result of this improvement, all
the attributes including processing time distributions can be
estimated accurately under relatively mild assumptions.

The rest of the paper is organized as follows. Section II
reviews the related work to highlight the motivation behind.
Section III describes the physical system and defines the
digital model, while Section IV discusses the details of
the proposed model generation approach. A validation of
the approach on three simulated instances is reported in
Section V. Conclusive remarks are presented in Section VI.

II. RELATED WORK

According to Kritzinger et al. [11], a digital twin is a
digital object that represents an existing physical object
and exchanges data with it in a bidirectional manner. The
digital object alone without any connections from or to the
physical object is called the digital model. Digital twins
are specifically developed for their intended purposes, for
example design assistance and property validation [12]. With
digital twins, a manufacturer could parallelize the executions
of product development and production planning. This helps
to reduce the integration time of new product variants and
identify potential bottlenecks at an early stage [6].

Simulation-based digital twins are commonly applied in
the production phase. They are operable offline for analyzing
sensitivity and robustness against uncertainties, or online for
anticipating deviations from the plan and selecting the best
action after a disturbance [13]. In the online operation mode,
the digital model has to align with its physical counterpart
and adapt to changes in the system configuration at all
times, which cannot rely solely on human experts. Automatic
approaches for generating and updating digital models would
therefore markedly promote the deployment of digital twins
in the manufacturing industry [14].

Pourbafrani and van der Aalst [15] proposed a novel
framework that exploits statistical and machine learning

techniques to generate causal-loop diagrams from coarse-
grained event logs. The main idea is to identify the un-
derlying relations between system variables. Causal-loop
diagrams can be used to simulate and predict high-level
system dynamics. Lugaresi and Matta [10] proposed a pro-
cess mining-based approach to automated model generation
and tuning for production lines. The generated models are
extended directed graphs that have a simulation equivalence.
More complex systems such as assembly lines can also be
discovered through an extension of the approach to object-
centric process mining [16].

Despite being contributive, these approaches resort to a
sequential discovery procedure that does not keep track of
the system state. Most attributes are then blindly estimated
without taking into account their state-dependent nature. For
example, a certain scheduling policy may take effect only
when a station is in the degraded condition. In this case, the
correct behavior of the system can hardly be captured without
awareness of how its state evolves over time, resulting in
a loss of accuracy. The motivation for the proposed model
generation approach is indeed to overcome such a major
limitation among previous work.

III. PROBLEM FORMULATION

This work deals with the problem of automatically gen-
erating digital models for production lines. In the following
two subsections, we provide a description of the physical
system under study and the definition of the digital model
used to represent it.

A. Physical System

The physical system to be discovered is a production line
comprising a number of stations connected by conveyors,
splitters and mergers for discrete-part manufacturing. Each
station integrates a buffer with serial storage slots and a
machine with parallel processing units to carry out a single
production step on incoming parts. After being processed at
one station, a part is transferred to another station responsible
for the next production step. If the buffer of the latter happens
to be full at the moment, the part is forced to wait at the
former until a storage slot in the buffer becomes empty,
i.e. blocking after service (BAS). Work in progress (WIP)
is under strict control so that a raw part may be dispatched
only when the total number of parts in the system is less
than a configured limit. This is helpful to prevent deadlock
and optimize performance [17]. A part is removed from the
system once it is finished. For clarity, we refer to stations
where the production process is initiated and terminated as
the source and sink stations respectively. Note that the source
stations fetch raw parts from the inventory directly, hence no
buffers as opposed to the others.

Figure 1 illustrates an instance of the physical system,
which consist of four stations, namely S1, S2, S3 and S4. As
can be seen, S1 and S4 serve as a source and a sink station,
while S2 and S3 form a parallel substructure. S1 initiates the
production process by pulling a raw part from the inventory
if it has an idle processing unit and the WIP is below the

S1

S2

S3
S4

Conveyor Splitter/Merger Buffer

Fig. 1: An instance of the physical system with a parallel substructure.

TABLE I: A FRAGMENT OF THE EVENT LOG EXPECTED FROM THE
PARALLEL INSTANCE.

Time Station ID Part ID Activity

.
2023-01-29 12:47:02 S1 P3 EXIT
2023-01-29 12:47:06 S1 P2 EXIT
2023-01-29 12:47:19 S2 P2 ENTER
2023-01-29 12:47:32 S3 P1 EXIT
2023-01-29 12:47:32 S3 P3 ENTER
2023-01-29 12:47:45 S4 P1 ENTER
2023-01-29 12:48:34 S4 P1 EXIT
2023-01-29 12:50:48 S2 P2 EXIT
2023-01-29 12:50:54 S3 P3 EXIT
2023-01-29 12:50:57 S4 P2 ENTER
.

maximum limit. Parts from S1 fork into two separate flows
to S2 and S3. After that, they join again into a single flow
to S4, where the production process is terminated.

We require the physical system to be equipped with a
data acquisition module that records an event when a part
enters or exits the machine of a station and collates the
recorded events into a log based on their temporal order.
In our setup, an event is a quadruple e = (t, s, p, a), where
e.t is the occurrence time of the event, e.s and e.p are the
IDs of the involved station and part respectively, and e.a is
the activity performed in the event. This quadruple uniquely
differentiates every event recorded by the data acquisition
module, since it is impossible for a part to enter or exit the
same machine repeatedly at the same time. Let E be the
set of the recorded events. The event log L can be viewed
as the chronological permutation of elements in the set E ,
i.e. L : [1 . . |E|] ↔ E1 such that ∀i ∈ [1 . . |E| − 1], L(i).t ≤
L(i+ 1).t. Particularly, we deem simultaneous events to be
naturally prioritized and preserve their original order in the
log. Table I reports a fragment of the event log expected
from the parallel instance illustrated in Figure 1.

B. Digital Model

To model the aforementioned physical system, a few
assumptions are made on its dispatching policy and routing
topology. We presume that the system applies an egalitarian
dispatching policy. When the WIP is less than the maximum

1[x . . y] denotes an integer interval between x and y; X ↔ Y denotes a
bijective mapping between X and Y .

TABLE II: THE PARAMETERS OF THE DIGITAL MODEL.

Symbol Definition

S Set of the stations
C Set of the connections

Ssource Set of the source stations
Ssink Set of the sink stations

bs∗ Buffer capacity at the station s
ms Machine capacity at the station s
Ps Processing time distribution at the station s

rs,s′ Routing probability on the connection (s, s′)
Ts,s′ Transfer time distribution on the connection (s, s′)

nmax Maximum allowable WIP
∗ bs is constantly zero if s ∈ Ssource.

 ≤ nmax

Raw
Parts

Finished
Parts

(rS1,S2,TS1,S2)

S1
(0, mS1, PS1)

S2
(bS2, mS2, PS2)

S3
(bS3, mS3, PS3)

S4
(bS4, mS4, PS4)

(rS1,S3,TS1,S3)

(rS2,S4,TS2,S4)

(rS3,S4,TS3,S4)

Fig. 2: The digital model adapted for the parallel instance.

limit, every source station with an idle processing unit has
equal chance of winning a raw part. This is trivially true if
the number of the source stations is merely one. Besides, we
presume the routing topology of the system to be well formed
in the sense that no connections exist from any stations to
a source station or from a sink station to any stations. Such
connections may pose complex scheduling issues and are
thus scarcely seen in reality. For example, an additional rule
needs to be enacted so as to decide whether a source station
accepts a raw part from the inventory or one from some
station in the case of contention.

Under these assumptions, we model the physical system
using an extended directed graph, where nodes represent
stations in the system, and edges represent connections
between the stations. Table II summarizes the parameters of
the digital model. The topology of the system is depicted
by four sets: S, C, Ssource and Ssink. S is the set of the
stations, C is the set of the connections, Ssource is the set of
the source stations, and Ssink is the set of the sink stations. To
characterize each station s ∈ S, we assign the corresponding
node three attributes, which are the buffer capacity bs, the
machine capacity ms and the processing time distribution
Ps at the station. Likewise, the edge corresponding to each
connection (s, s′) ∈ C is assigned two attributes: the routing
probability rs,s′ and the transfer time distribution Ts,s′ on
the connection. The maximum allowable WIP, in particular,
is treated as a global attribute nmax. Figure 2 illustrates the
digital model adapted for the parallel instance illustrated in
Figure 1.

The choice of an extended directed graph rather than
a formal mathematical model, e.g. a Petri net [18] or a
queueing network [19], or a simulation model executable
by specific software, e.g. AnyLogic or Arena, stems from a
trade-off between conciseness, expressiveness and flexibility.
Compared to a Petri net, the extended directed graph treats
stations and connections as individual nodes and edges,
thereby being more intuitive and tractable. Blocking in a
queueing network is confined between immediately con-
nected stations, which makes the inclusion of the transfer
times difficult. The extended directed graph does not have
this limitation. Nevertheless, one can straightforwardly map
it onto a closed queueing network with BAS [20] if there is
just one source station and the transfer times are negligible,
and may also translate its semantics into a generalized
stochastic Petri net [21] or a simulation model with extra
effort.

IV. PROPOSED APPROACH

We now elaborate the proposed approach to the automated
generation of digital models for production lines. To help
with a better understanding, an overview of the approach is
first drawn, followed by a clarification of technical details
for all the steps.

A. Overview

As explained in the last section, a production line can be
represented as an extended directed graph. We automatically
generate such a digital model from an event log through
a pipeline of five steps, specifically data extraction, trace
analysis, topology mining, state reconstruction and attribute
mining. Figure 3 provides an overview of the proposed
approach. Given an event log in a format equivalent to
Table I, we begin by extracting sets, subsets and sublogs
that are indispensable in the subsequent steps. The traces
of parts involved in the event log are then collected, and the
system topology is mined from the set of the collected traces,
which leads to a bare directed graph without attributes. Next,
we reconstruct the state of the system after every event by
recursively computing its relative states and determining its
initial state. The attributes of the stations and connections are
mined from the state trajectory in combination with the event
log, and an extended directed graph is ultimately constructed.

Event Log

Sets, Subsets,
Sublogs

Extract
Data

Collect
Traces

Mine
Topology

Bare
Directed Graph

Reconstruct
States

Mine
Attributes

Extended
Directed Graph

Fig. 3: An overview of the proposed approach.

B. Data Extraction

As a preparation, the following sets, subsets and sublogs
are extracted from the input event log L:

• the set E of events recorded in the event log, i.e. E =
{e | ∃i ∈ [1 . .∞), e = L(i)};

• the set S of stations involved in the event log, i.e. S =
{s | ∃e ∈ E , s = e.s};

• the set P of parts involved in the event log, i.e. P =
{p | ∃e ∈ E , p = e.p};

• the subset Es of events related to each station s ∈ S,
i.e. Es = {e | e ∈ E ∧ e.s = s};

• the subset Ep of events related to each part p ∈ P ,
i.e. Ep = {e | e ∈ E ∧ e.p = p};

• the sublog Ls of events related to each station s ∈ S ,
i.e. Ls : [1 . . |Es|] ↔ Es such that ∀j ∈ [1 . . |Es| −
1], Ls(j).t ≤ Ls(j + 1).t;

• the sublog Lp of events related to each part p ∈ P ,
i.e. Lp : [1 . . |Ep|] ↔ Ep such that ∀j ∈ [1 . . |Ep| −
1], Lp(j).t ≤ Lp(j + 1).t.

We regard the sublogs as chronological permutations of
events as well. These sets, subsets and sublogs will be
extensively used later.

C. Trace Collection

By our definition, the trace θp of a part p is the sequence of
stations that it went through, i.e. θp : [1 . . hp] → Sp, where
hp is the length of the trace, and Sp is the set of stations
visited by the part. If the input event log does not cover
the entire production period, the sublogs of events related
to a minority of parts are probably truncated. To cope with
potential incompleteness, we collect the trace of each part p
from the sublog Lp with respect to the activity performed in
the first recorded event:

• when Lp(1).a = ENTER,

θ̂p(k) = Lp(2k − 1).s for k ∈ [1 . . ĥp], (1)

where ĥp = ⌈|Ep|/2⌉;
• when Lp(1).a = EXIT,

θ̂p(k) =

{
Lp(1).s if k = 1,

Lp(2k − 2).s if k ∈ [2 . . ĥp],
(2)

where ĥp = ⌈(|Ep| − 1)/2⌉+ 1.
Consider the fragment of the event log reported in Table I
as an example. By applying (1) and (2), θ̂P1 = (S3,S4),
θ̂P2 = (S1,S2,S4) and θ̂P3 = (S1,S3).

D. Topology Mining

Four sets, i.e. S, C, Ssource and Ssink, together depict the
topology of the system. Among them, the set S of the stations
has been available since the first step. Let Θ̂ be the set
of traces collected from the input event log. As shown in
Algorithm 1, the set C of the connections can be found
by simply iterating over each unique trace θ̂ ∈ Θ̂ with
length ĥ. Recall that we presume no connections from any
stations to a source station or from a sink station to any

Algorithm 1: Mining the topology of the physical system.

Input: Θ̂, S Output: C, Ssource, Ssink

1: C := ∅, Ssource := ∅, Ssink := ∅
2: for θ̂ ∈ Θ̂
3: for k ∈ [1 . . ĥ− 1]
4: C := C ∪ {(θ̂(k), θ̂(k + 1))}
5: for s ∈ S
6: if ∄s′ ∈ S, (s′, s) ∈ C
7: Ssource := Ssource ∪ {s}
8: if ∄s′ ∈ S, (s, s′) ∈ C
9: Ssink := Ssink ∪ {s}

stations. The sets of the source and sink stations, Ssource
and Ssink, are identified accordingly. As long as all the
connections have been observed in the event log, the digital
model is isomorphic to the physical system. For example,
the set of traces collected from the fragment of the event
log reported in Table I is {(S3,S4), (S1,S2,S4), (S1,S3)},
which is enough to detect the actual topology of the parallel
instance illustrated in Figure 1.

E. State Reconstruction

To encode the system state, we assign every station s ∈ S
an index K(s) with K : S ↔ [1 . . |S|]. The state of a
station s is governed jointly by the number nK(s),1

2 of
parts being transferred to its buffer or queued therein and
the number nK(s),2 of parts being processed by its machine
or blocked therein. Based on this notion, the state of the
entire system can be written as a vector n = (nk,l) =
(n1,1, n1,2, n2,1, n2,2, . . . , n|S|,1, n|S|,2) ∈ N2|S|. We denote
by n(i) the system state after the i-th event in the input log.
In particular, n(0) is the initial state of the system before
the first event.

We infer the trajectory of the system state from the change
brought by each event. If the sublog of events related to
a part is forward truncated at a non-sink station with an
EXIT activity, the next station to which the part proceeded
is uncertain. State reconstruction is thus viable only up to
but excluding the ξ-th event such that

ξ = min{i | (∃p ∈ P, L(i) = Lp(|Ep|))
∧ L(i).s /∈ Ssink ∧ L(i).a = EXIT}.

(3)

Let ek,l ∈ N2|S| be a vector of all zeros except for a one in
the (k, l)-th entry. The change of the system state due to the
occurrence of the i-th event is given by

∆n(i) = n(i)− n(i− 1) for i ∈ [1 . . ξ),

=

+ek,2 if L(i).s ∈ Ssource ∧ L(i).a = ENTER,
−ek,1 + ek,2 if L(i).s /∈ Ssource ∧ L(i).a = ENTER,
−ek,2 + ek′,1 if L(i).s /∈ Ssink ∧ L(i).a = EXIT,
−ek,2 if L(i).s ∈ Ssink ∧ L(i).a = EXIT,

(4)

2nK(s),1 is constantly zero if s ∈ Ssource.

where k = K(L(i).s) is the index of the station involved in
the i-th event, and k′ = K(LL(i).p(L

−1
L(i).p(L(i)) + 1).s) is

the index of the next station that the part involved in the i-th
event was routed to.

(4) enables us to recursively compute the relative state
n̊(i) of the system after the i-th event with reference to its
initial state n(0):

n̊(i) = n(i)− n(0) =

{
0 if i = 0,

n̊(i− 1) + ∆n(i) if i ∈ [1 . . ξ).
(5)

Suppose that every entry of the system state has ever reached
zero, i.e. ∀(k, l) ∈ [1 . . |S|] × {1, 2},∃i ∈ [0 . . ξ), nk,l(i) =
0. We determine the initial state of the system and then its
state after the i-th event as

n̂(0) = −
(

min
i∈[0..ξ)

n̊k,l(i)

)
, (6)

n̂(i) = n̊(i) + n̂(0) for i ∈ [1 . . ξ). (7)

Notably, the prerequisite for (6) is immediately satisfied if
the event log has captured the beginning of the production
period, in which case n(0) = 0.

F. Attribute Mining

Knowing the system state after every event greatly facil-
itates attribute mining. Capacity attributes inclusive of the
WIP limit can be obtained directly from the state trajectory
as follows:

• the buffer capacity at each station s /∈ Ssource,

b̂s = max
i∈[0..ξ)

n̂K(s),1(i); (8)

• the machine capacity at each station s ∈ S,

m̂s = max
i∈[0..ξ)

n̂K(s),2(i); (9)

• the maximum allowable WIP,

n̂max = max
i∈[0..ξ)

∑
(k,l)∈[1..|S|]×{1,2}

n̂k,l(i). (10)

(8), (9) and (10) are exact if and only if (6) holds and the
actual values of the capacity attributes have ever been hit,
i.e. ∃i ∈ [0 . . ξ), nK(s),1(i) = bs, ∃i ∈ [0 . . ξ), nK(s),2(i) =
ms and ∃i ∈ [0 . . ξ),

∑
(k,l)∈[1..|S|]×{1,2} nk,l(i) = nmax.

Two different types of flow time samples are acquirable
from the input event log. The first type of sample is the flow
time(s) of a part p from entering to exiting the machine of
a station s:

Lp(j).t− Lp(j − 1).t for j ∈ [2 . . |Ep|]
s.t. i < ξ ∧ Lp(j).s = s ∧ Lp(j).a = EXIT,

(11)

where i = L−1(Lp(j)) is the log index of the j-th event in
the sublog Lp. Both processing and blocking times may be
contained in such a sample. Let s′ be the ID of the next sta-
tion visited by the part p, i.e. s′ = Lp(j+1).s, and drelease the
reaction delay from a storage slot in a buffer becoming empty
until the first blocked part being released. To retain those with
only processing times, we reject a flow time sample of the

first type if the part p was blocked before exiting the machine
of the station s, i.e. s /∈ Ssink ∧ n̂K(s′),1(i) = b̂s′ ∧ (∃i′ ∈
[1, i], L(i).t − L(i′).t ≤ drelease ∧ n̂K(s′),1(i

′ − 1) = b̂s′).
Samples left are used to fit the processing time distribution
at the station s.

The second type of sample is the flow time(s) of a part p
from exiting the machine of a station s to entering that of a
station s′:

Lp(j).t− Lp(j − 1).t for j ∈ [2 . . |Ep|]
s.t. i < ξ ∧ Lp(j − 1).s = s ∧ Lp(j).s = s′

∧ Lp(j).a = ENTER,
(12)

where i = L−1(Lp(j)) is the log index of the j-th event
in the sublog Lp. Such a sample may contain both transfer
and queueing times. Let dseize be the reaction delay from a
processing unit in a machine becoming idle until the first
queued part being seized. To retain those with only transfer
times, a flow time sample of the second type is rejected if the
part p was queued before entering the machine of the station
s′, i.e. n̂K(s′),2(i) = m̂s′ ∧ (∃i′ ∈ [1, i], L(i).t − L(i′).t ≤
dseize∧n̂K(s′),2(i

′−1) = m̂s′). The transfer time distribution
on the connection (s, s′) is fit to the remaining samples.

Let fs,s′ be the frequency of parts passing through the
connection (s, s′), which is essentially the number of the
corresponding flow time samples acquired previously. We
calculate the routing probability on each connection (s, s′) ∈
C as

r̂s,s′ =
fs,s′∑

(s,s′′)∈C fs,s′′
. (13)

Routing probabilities yielded from (13) readily sum up to
one, hence no need to be normalized.

At this stage, all the parameters of the extended directed
graph have been mined, including the four sets that define
the topology, the attributes of the stations and connections as
well as the WIP limit. The digital model for representing the
physical system can be finally built by populating a graph
data structure accordingly.

V. VALIDATION

To validate the proposed approach, we implement and en-
capsulate it in a Python module. Three instances of the phys-
ical system, on which the validation is conducted, are simu-
lated using Arena. For benchmarking, all the code and data
to reproduce the experiment results are shared at https://
github.com/zhululai/auto-model-gen-sr under the
BSD 3-Clause and CC BY 4.0 licenses respectively.

A. Experiment Setup

Apart from the parallel instance introduced in Section III,
two other instances of the physical system are created for
the validation of the proposed approach. Figures 4 and 5
illustrates these two instances. Like the parallel one, both of
them comprise four stations whose IDs are S1, S2, S3 and
S4. S1 and S4 in the two instances play the same roles, i.e. a
source and a sink station, as those in the parallel instance.
However, substructures formed by S3 and S4 therein are
serial and cyclic respectively.

S1

S2 S3

S4

Fig. 4: An instance of the physical system with a serial substructure.

S1

S2

S3
S4

Fig. 5: An instance of the physical system with a cyclic substructure.

Tables III and IV report the attributes of stations and con-
nections in the serial, parallel and cyclic instances. Correctly
determining the initial state of the system and mining the
capacity attributes of the stations requires the WIP limit to
be bounded between the maximum capacity of the buffer or
machine at each station and the total capacity of stations in
the system minus the former, i.e. maxs∈S{bs,ms} ≤ nmax ≤∑

s∈S(bs+ms)−maxs∈S{bs,ms}. If the system has cyclic
substructures, the WIP limit must meanwhile be less than
the total capacity of stations within any cycle, i.e. nmax <
mino∈O

∑
s∈So

(bs + ms), where O is the set of cycles in
the system topology, and So is the set of stations within
the cycle o ∈ O. This is to prevent deadlock. The capacity
attributes of stations in the three instances are chosen such
that a WIP limit satisfying the above conditions exist. As
can be calculated from Table III, the feasible range of the
WIP limit is from 6 to 12 for every instance. We assume the
processing and transfer times of parts in the instances to be
Erlangianly distributed. The expectations of the distributions
are chosen in view of the fact that processing times are
often much larger and more diverse than transfer times in
a real system. To reflect their difference in variability, the
coefficient of variation is set to 0.5 for the processing time
distributions and to 0.2 for the transfer time distributions.

The actual topology of the system can be easily detected,
provided that all the connections have been observed in the
input event log. We are therefore primarily interested in how
the accuracy of the proposed approach in attribute mining
would be affected by the system topology, the WIP limit
and the log length. To answer this question, nine alternatives
are developed from the three instances by configuring the
WIP limit to the lower bound, the median and the upper

TABLE III: THE ATTRIBUTES OF STATIONS IN THE SERIAL, PARALLEL
AND CYCLIC INSTANCES.

Instance Station
Attribute∗

bs ms µ(Ps) σ(Ps)

Serial S1 0 1 50 25
S2 4 2 150 75
S3 4 1 75 37.5
S4 6 1 100 50

Parallel S1 0 2 100 50
S2 4 1 150 75
S3 4 1 150 75
S4 6 1 75 37.5

Cyclic S1 0 1 75 37.5
S2 6 2 100 50
S3 4 1 50 25
S4 4 1 75 37.5

∗ µ(Ps) and σ(Ps) stand for the mean and the standard deviation
of the processing time distribution on the station s.

TABLE IV: THE ATTRIBUTES OF CONNECTIONS IN THE SERIAL, PARAL-
LEL AND CYCLIC INSTANCES.

Instance Connection
Attribute∗

rs,s′ µ(Ts,s′) σ(Ts,s′)

Serial (S1, S2) 1 10 2
(S2, S3) 1 10 2
(S3, S4) 1 10 2

Parallel (S1, S2) 0.5 10 2
(S1, S3) 0.5 10 2
(S2, S4) 1 10 2
(S3, S4) 1 10 2

Cyclic (S1, S2) 1 10 2
(S2, S3) 0.4 10 2
(S2, S4) 0.6 10 2
(S3, S2) 1 10 2

∗ µ(Ts,s′) and σ(Ps,s′) stand for the mean and the standard
deviation of the transfer time distribution on the connection
(s, s′).

bound of its feasible range, i.e. 6, 9 and 12. Each of them
is used to synthesize an event log that span the production
of 12000 parts. Three longitudinally overlapping partitions
of the resultant event log are then retrieved, starting from
the 1001st to the 1100th, to the 2000th and to the 11000th
completion respectively. The preceding procedure is repeated
multiple times with five random seeds: 14561, 25971, 31131,
22553 and 12121. As such, we acquire a total of 135
truncated event logs with a length of 100, 1000 or 10000
completions. Table V reports the settings of these event logs.
A digital model is generated from each event log, which
is carried out on a Windows 10 laptop with eight Intel(R)
Core(TM) i7-8565U CPUs @ 1.80 GHz and 16 GB RAM.

B. Experiment Results

Unsurprisingly, the topologies of the generated models and
the corresponding instances are identical in all the cases.
Figure 6 compares the the average times spent in generating
digital models for the serial, parallel and cyclic instances. It
takes longer to generate a digital model for the serial instance
than for the parallel one, because a completion in the former

TABLE V: THE SETTINGS OF THE ACQUIRED EVENT LOGS.

Dimension Settings

System Topology Serial, Parallel, Cyclic
WIP Limit 6, 9, 12
Log Length 100, 1000, 10000 completions
Log Truncation Both sides
Random Seed 14561, 25971, 31131, 22553, 12121

Serial Parallel Cyclic

System Instance

10−1

100

101

102

103

A
v
e
ra

g
e
 G

e
n
e
ra

ti
o
n
 T

im
e
 (

s
)

0.4 0.3
0.5

4.4 3.5
5.1

72.6 57.5
79.4

Log Length

102 103 104

Fig. 6: The average times spent in generating digital models for the serial,
parallel and cyclic instances.

adds eight events whilst that in the latter only counts six
events. For the same reason, generating a digital model for
the cyclic instance needs even more time, on average 79.4 s
when the input event log covers 10000 completions.

We evaluate the discrepancy between a digital model and
its physical counterpart in a station attribute x according to
the following metric:

max
s∈S

∣∣∣∣ x̂s − xs

xs

∣∣∣∣ , (14)

where x̂s and xs are the estimated and the true value
of the attribute x at the station s. (14) is basically the
maximum absolute relative error of the attribute x among
all the stations. The discrepancy of the digital model from
the physical system in a connection attribute y is evaluated
similarly as

max
(s,s′)∈C

∣∣∣∣ ŷs,s′ − ys,s′

ys,s′

∣∣∣∣ , (15)

where ŷs,s′ and ys,s′ are the estimated and the true value of
the attribute y on the connection (s, s′).

Figures 7, 8 and 9 show the average maximum errors
in estimating the attributes of stations and connections in
the serial, parallel and cyclic instances respectively. Among
all the attributes, the buffer capacity and the transfer time
distribution are the most difficult to estimate. The major
cause of the inaccuracy is the lack of information in the input
event log. Under a low WIP limit, the number of parts being
transferred to some buffer or stored therein may never hit
the capacity of that buffer. As for a high WIP limit, the flow
time sample of a part from exiting the machine of one station
to entering that of another may always contain a blocking
time. A medium WIP limit is recommended to avoid such
situations. It is as expected that the errors of the estimated
values reduce as the length of the event log increases. As
suggested in Figures 7b, 8b and 9b, 1000 completions are

typically adequate to gain a good estimation of every attribute
under a medium WIP limit.

VI. CONCLUSIONS
This paper proposes an automatic model generation ap-

proach that explicitly takes into account the state of the
physical system. The mining of the capacity attributes thus
becomes more straightforward than ever, and the process-
ing and transfer time distributions may now be accurately
estimated. Moreover, the state trajectory gives an overall
insight into the system at any moment, which possibly
paves the way for the analysis of historical performance,
the identification of scheduling policies and the discovery of
complex manufacturing systems in future work.

Several limitations of the proposed approach are note-
worthy. The state space considered is limited by the data
acquisition capabilities of the physical system. This could
result in various levels of granularity depending on the
system configuration. The approach also requires a fair
amount of data to ensure a precise representation, which
hinders it from being adapted for certain applications. Last
but not least, the validation experiments are performed on
simple simulated instances. Further research is needed to
confirm its applicability to real-world production lines.

REFERENCES

[1] F. Tao, Q. Qi, A. Liu, and A. Kusiak, “Data-Driven Smart Manu-
facturing,” Journal of Manufacturing Systems, vol. 48, pp. 157–169,
2018.

[2] Q. Qi, F. Tao, Y. Zuo, and D. Zhao, “Digital Twin Service Towards
Smart Manufacturing,” Procedia CIRP, vol. 72, pp. 237–242, 2018.

[3] L. Wozniak and P. Clements, “How Automotive Engineering is Taking
Product Line Engineering to the Extreme,” in Proceedings of the 19th
International Conference on Software Product Line. ACM, 2015, pp.
327–336.

[4] S. C. Mathewson, “Simulation Program Generators: Code and Anima-
tion on a PC,” Journal of the Operational Research Society, vol. 36,
no. 7, pp. 583–589, 1985.

[5] Y. J. Son and R. A. Wysk, “Automatic Simulation Model Generation
for Simulation-Based, Real-Time Shop Floor Control,” Computers in
Industry, vol. 45, no. 3, pp. 291–308, 2001.

[6] F. Biesinger, D. Meike, B. Kraß, and M. Weyrich, “A Digital Twin
for Production Planning Based on Cyber-Physical Systems: A Case
Study for a Cyber-Physical System-Based Creation of a Digital Twin,”
Procedia CIRP, vol. 79, pp. 355–360, 2019.

[7] M. Fujihara and K. Yoneda, “Simulation through Explicit State De-
scription and Its Application to Semiconductor Fab Operation,” in
Proceedings of the 24th Winter Simulation Conference. ACM, 1992,
pp. 899–907.

[8] G. S. Martı́nez, S. Sierla, T. Karhela, and V. Vyatkin, “Automatic
Generation of a Simulation-Based Digital Twin of an Industrial
Process Plant,” in Proceedings of the 44th Annual Conference of the
IEEE Industrial Electronics Society. IEEE, 2018, pp. 3084–3089.

[9] W. M. P. van der Aalst, Process Mining: Data Science in Action.
Springer, 2016.

[10] G. Lugaresi and A. Matta, “Automated Manufacturing System Discov-
ery and Digital Twin Generation,” Journal of Manufacturing Systems,
vol. 59, pp. 51–66, 2021.

[11] W. Kritzinger, M. Karner, G. Traar, J. Henjes, and W. Sihn, “Digital
Twin in Manufacturing: A Categorical Literature Review and Classi-
fication,” IFAC-PapersOnLine, vol. 51, no. 11, pp. 1016–1022, 2018.

[12] S. Boschert and R. Rosen, “Digital Twin—The Simulation Aspect,”
Mechatronic Futures: Challenges and Solutions for Mechatronic Sys-
tems and Their Designers, pp. 59–74, 2016.

[13] L. Monostori, B. Kádár, T. Bauernhansl, S. Kondoh, S. Kumara,
G. Reinhart, O. Sauer, G. Schuh, W. Sihn, and K. Ueda, “Cyber-
Physical Systems in Manufacturing,” CIRP Annals, vol. 65, no. 2, pp.
621–641, 2016.

102 103 104

Log Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
A
v
e
ra

g
e
 M

a
x
im

u
m

 E
rr

o
r

Attribute

bs

ms

μ(Ps)

σ(Ps)

rs, s′

μ(Ts, s′)

σ(Ts, s′)

nmax

(a) nmax = 6

102 103 104

Log Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
v
e
ra

g
e
 M

a
x
im

u
m

 E
rr

o
r

(b) nmax = 9

102 103 104

Log Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
v
e
ra

g
e
 M

a
x
im

u
m

 E
rr

o
r

(c) nmax = 12

Fig. 7: The average maximum errors in estimating the attributes of stations and connections in the serial instance.

102 103 104

Log Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
v
e
ra

g
e
 M

a
x
im

u
m

 E
rr

o
r

(a) nmax = 6

102 103 104

Log Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
v
e
ra

g
e
 M

a
x
im

u
m

 E
rr

o
r

(b) nmax = 9

102 103 104

Log Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
v
e
ra

g
e
 M

a
x
im

u
m

 E
rr

o
r

(c) nmax = 12

Fig. 8: The average maximum errors in estimating the attributes of stations and connections in the parallel instance.

102 103 104

Log Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
v
e
ra

g
e
 M

a
x
im

u
m

 E
rr

o
r

(a) nmax = 6

102 103 104

Log Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
v
e
ra

g
e
 M

a
x
im

u
m

 E
rr

o
r

(b) nmax = 9

102 103 104

Log Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
v
e
ra

g
e
 M

a
x
im

u
m

 E
rr

o
r

(c) nmax = 12

Fig. 9: The average maximum errors in estimating the attributes of stations and connections in the cyclic instance.

[14] G. Lugaresi and A. Matta, “Real-Time Simulation in Manufacturing
Systems: Challenges and Research Directions,” in Proceedings of the
2018 Winter Simulation Conference. IEEE, 2018, pp. 3319–3330.

[15] M. Pourbafrani and W. M. P. van der Aalst, “Discovering System
Dynamics Simulation Models Using Process Mining,” IEEE Access,
vol. 10, pp. 78 527–78 547, 2022.

[16] G. Lugaresi and A. Matta, “Discovery and Digital Model Generation
for Manufacturing Systems with Assembly Operations,” in Proceed-
ings of the 17th IEEE International Conference on Automation Science
and Engineering. IEEE, 2021, pp. 752–757.

[17] J. A. Buzacott and J. G. Shanthikumar, Stochastic Models of Manu-
facturing Systems. Pearson, 1993.

[18] F. Bause and P. S. Kritzinger, Stochastic Petri Nets: An Introduction
to the Theory. Vieweg, 2002.

[19] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi, Queueing
Networks and Markov Chains: Modeling and Performance Evaluation
with Computer Science Applications. John Wiley & Sons, 2006.

[20] H. G. Perros, Queueing Networks with Blocking. Oxford University
Press, 1994.

[21] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis,
Modelling with Generalised Stochastic Petri Nets. John Wiley &
Sons, 1995.

View publication stats

https://www.researchgate.net/publication/373680026

