
Inferring Missing Entity Identifiers from
Context using Event Knowledge Graphs

Ava J.E. Swevels1[0000−0003−0992−208X], Remco M.
Dijkman1[0000−0003−4083−0036], and Dirk Fahland1[0000−0002−1993−9363]

Eindhoven University of Technology, Eindhoven, The Netherlands {a.j.e.swevels,
r.m.dijkman, d.fahland}@tue.nl

Abstract. Complete event data is essential to perform rich analysis.
However, real-life systems might fail in recording the (correct) case iden-
tifiers the system has operated on, resulting in incomplete event data. We
aim to infer missing case identifiers of events by addressing the physical
constraints of its process which previous work has failed to do. We mod-
elled event data and its physical context in an Event Knowledge Graph
(EKG) and formalized a definition for inference rules using EKGs. Five
inference rules regarding physical objects are created to infer identifiers
in a synthetic data set and a data set from the IC manufacturing in-
dustry. The approach is evaluated using conformance checking. Initially,
none of the traces were complete. Using our method, we could infer a
case identifier for 95% of the events resulting in 88% complete traces.

Keywords: Log repair · Event Knowledge Graph · Modeling · In-
ference Rule · Contextual Information · Physical Constraints

1 Introduction

Business Process Analytics (BPA) is an area of data analytics that facilitates
rich analysis of the way in which business processes work, providing insight into
how business processes can be improved. BPA techniques rely on event logs
that record the events that happened in the business process, along with (the
identifier of) the case to which they belong and the moment in time at which
they happened, possibly extended with other information. However, in real-life
systems the data in the event logs may be incomplete [18]. Consequently, before
event data can be used for BPA, missing data must be added or incomplete
events must be removed. If missing data can somehow be inferred from the
context of the events, that is preferred, because it leads to more usable data to
work with. This work focuses on inferring missing case identifiers, also known as
the “event-case correlation” problem [5].

Several methods exist to infer missing case identifiers from context. The dom-
inant context information that these methods use for inferring case identifiers is
a process model [11,16]. This has some clear drawbacks. Firstly, a process model
may not exist or may be hard to create, for example in multi-entity processes [9]
or in case the data is at a different level of abstraction than the level at which
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the process is understood. Secondly, inference for cyclic processes either requires
further context information, such as constraints on time [4] or data [5], which
may not be available either, or it may require time-consuming iterations [6] to
do the inference. Thirdly, most existing methods only connect the incomplete
information to the context information within the algorithm. Only [6] makes the
connection between data and context available for further analysis.

To alleviate these problems, we aim to develop techniques for inferring miss-
ing identifiers without relying on a process model. This paper focuses on inferring
missing case identifiers for processes with batching when context is available in
the form of information about physical objects. Since these objects are bound by
the laws of physics, information about them can be used in combination with
simple physics rules to infer other information. For example, if a physical object
is in one place in one event and in another place in another event, it must have
been moved in between and a movement event must have involved this object.

Specifically, this paper proposes a technique to infer missing case identi-
fiers when context information is available about locations at which activities
are executed. We translate the incomplete event log into an (incomplete) Event
Knowledge Graph (EKG) [9] and show how to extend this EKG with context
knowledge about locations. An EKG models multi-dimensional event data con-
sidering multiple entity perspectives. Therefore, there are no cases in an EKG
and hence the notion of a single case identifier does not exist. Instead the notion
of multiple entity identifiers is used. Based on EKGs, containing data extended
with context, we introduce pattern-based inference rules. The inference rules
define how missing entity identifiers can be inferred from context information.
The rules are implemented as queries in a graph database.

We evaluate the technique on an industrial case study with NXP Semicon-
ductors by showing that it can be used to infer missing entity identifiers. Using
our method on event data of 7250 events, where 86% of the events lacked an
entitiy identifier, we could infer an identifier for 95% of the events within 30
seconds. Subsequent conformance checking against a normative process model
validated the correctness of the inferred identifiers.

Against this background, the remainder of the paper is structured as follows.
The related work is discussed in Sect. 2. The problem is elaborated on in Sect.
3 along a running example. Sect. 4 describes a method for inferring identifiers
from context using an EKG. Sect. 5 shows the proposed method by creating
inference rules for the running example and industrial use case and validates the
inference using conformance checking. The findings are discussed in Sec. 6.

2 Related work

Data-driven process analysis defines minimal requirements for event logs [12]:
each event contains at least an activity, timestamp and a case identifier. However,
in practice, collected event data might not meet these requirements.

Event data quality issues are assessed in terms of missing or incorrectly
recorded attribute values. These typically manifest themselves in systematic “im-
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Table 1. Overview of types of (incomplete) data

Timestamp Activity Case Identifier Context Knowledge used for Inference
- ✓ ✓ timing information [17,10]
✓ - ✓ other attributes to activities [13,20,2]
✓ ✓ - acyclic process model [11,16];

process model + add. constraints [4,5];
process model + sim. annealing [6];
surrogate id [15]; activity properties [this]

perfection patterns” [18] due to imperfect data recording mechanism. Accord-
ingly, specific techniques have been proposed for detecting if such data quality
‘patterns’ exist in an event log [1] and for repairing them if they exist, as we
discuss below. Repairing the data enables us to apply techniques that require
complete data such as rich analysis techniques and traceability.

Assuming correct activity and case attributes have been identified [3,14],
we focus on missing values for the standard attributes of case/object identifier,
activity, and timestamp. Existing literature infers missing values for one of the
attributes based on information in the other attributes and additional context
knowledge as summarized in Tab. 1.

Missing timestamps can be inferred by using knowledge of duration of pro-
cess steps, both, for isolated cases [17] and cases processed via shared resources
and queues [10]. Missing activities can be inferred by knowledge of how events
with specific data attributes in a specific behavioral context relate to activities,
e.g., by aggregating low-level observations to activities [13,20] or matching text
attributes to activity descriptions [2].

Missing case identifiers are typically inferred by leveraging control-flow knowl-
edge. Existing techniques use a given acyclic probabilistic Markov model [11] or
first estimate a model of an acyclic process from an incomplete log and then infer
case identifiers [16]. Inferring identifiers for cyclic processes requires, next to a
process model, either additional timing constraints [4], data constraints [5], or
multiple iterations of matching, e.g., through time-costly simulated annealing [6]
that also generate rules for correlating events to cases based on the activity, event
properties, and their immediate context. No process model is required when a
surrogate identifier such as the user in a clickstream is present [15]. A common
trait of all techniques is that they assume isolated cases (no batching) and the
context knowledge is kept separate from the incomplete event data and recon-
ciled within the algorithmic technique itself.

This paper addresses the problem of inferring missing entity identifiers in pro-
cesses with batching but without leveraging a process model defining the control-
flow or surrogate identifiers. Instead, we focus on processes handling physical
objects and use knowledge on the activities themselves and their (abstract) lo-
cations to infer entity identifiers. Moreover, we show how to reconcile context
information and incomplete event data within the same data model by lever-
aging event knowledge graphs [9] that naturally allow incorporating additional
concepts, such as ‘activity’, ‘location’, and ‘object’ for representing event logs.
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3 Missing Identifiers in Processes with Physical Objects

We illustrate the problem of identifying from incomplete data which physical
objects in a process suffered from errors. We show by a simple example that
existing inference techniques fail to reliably infer correct entity identifiers for
processes with physical objects and batching. We illustrate how we can reliably
infer entity identifiers when applying simple physical constraints and contex-
tual knowledge about activities and their locations. Then, we state the specific
problem together with the expected in- and output.
Notation on Event Data. We first recall some notation on event data over
multiple identifiers, i.e., object-centric event data, based on [9]. We write V al for
the universe of values, including disjoint sets of activity names and timestamps
Act, Time ⊆ V al. Time is totally ordered by ≤.

An event table with entities (i.e., object-centric log) T = (E,Attr, Ent,#)
consists of events E, attributes {act, time} ⊆ Attr, entity type attributes ∅ 6=
Ent ⊆ Attr, and partial attribute value function # : E ×Attr ↛ V al assigning
e ∈ E and a ∈ Attr value #a(e) = v (#a(e) =⊥ if a is undefined for e) with
#time(e) ∈ Time and #act(e) ∈ Act are defined.

An event e may have a multi-valued attribute #a(e) = {v1, . . . , vn} (set) or
#a(e) = 〈v1, . . . , vn〉 (list) for example for events referring to multiple objects;
and we write vi ∈ #a(e). For uniform notation, we also write v ∈ #a(e) for
single-valued #a(e) = v.

In the generalized setting of object-centric or multi-entity processes [9] a
trace is defined in relation to an entity identifier. Let ent ∈ Ent be an entity
type. The entity identifiers of type ent ∈ T are ent(T ) = {n | n ∈ #ent(e),
e ∈ E} \ {⊥}. Let n ∈ ent(T ) be an entity identifier. An entity trace of n is a
sequence πn = 〈e1 . . . ek〉 of events {e1 . . . ek} = {e ∈ E | n ∈ #ent(e)} ordered
by #time(ei) ≤ #time(ej) for 1 ≤ i < j ≤ k. In the following, we specifically
discuss (identifiers of) entities that are physical objects, e.g., a box.
Running example. Figure 1 shows a process, modeled as a proclet [10] (bot-
tom), in the physical environment in which it is executed (top). There are two
Assembly Lines at which Boxes are filled and sealed. A Tray of Boxes, i.e. a

Fig. 1. A process model (proclets [10]) of assembly lines where boxes in a tray are
filled, sealed, and labeled (bottom) together with the physical context (top).
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Fig. 2. A small log with missing identifiers: observed events with missing entity iden-
tifiers (a), behaviors found with a control-flow method (b, c) and correct behavior (d).

batch, is loaded into an Assembly Line if it is Empty, then each Box individu-
ally passes several stations and finally the Tray is unloaded from the Assembly
Line. The first station is the Fill Station, at which a Box is loaded, filled and
unloaded. The second station is the Seal Station at which a Box is loaded, sealed
and unloaded. Loading and Unloading of the stations is done by a robot arm that
needs to be aware of the Position of the Box in the Tray.

Only when Sealing, each Box is labeled making it uniquely identifiable. Hence
only Seal events record an entity identifier for the box. Further, Load and Unload
events register per station the Position of a Box in the Tray. For instance, pro-
cessing three boxes results in the incomplete log shown in Fig. 2 where attribute
b records the box identifier and p the position in the tray. No event records, both,
b and p. Fig. 2(a) visualizes this incomplete log as a Performance Spectrum [7].
Note that no complete traces of boxes can be constructed.

Suppose a Filling error occurred at e3. We cannot determine which box was
affected by the error on the incomplete log. As a result, an operator has to
inspect and possibly even discard the entire Tray. To mitigate this problem, we
have to obtain complete traces by inferring the likely values for b.

Using control-flow models as context knowledge, e.g., [11,16] allows to infer
unknown value #b(ei) from known value #b(ej) when ej directly precedes or
succeeds ei; e.g., infer #b(e9) = b1 from #b(e10) = b1. Existing technique fail to
address the physical constraints and batching (boxes in trays) in our example.
The method of [16] generates multiple possible solutions of box id values and
traces (depending on parameters), two are shown in Fig 2(b) and (c): besides
the analyst having to pick a solution, the method wrongly relates e1 and e20 to
only a single box and wrongly claims b1 went through filling and sealing first,
while the log shows that the box at p = 2 was filled first and sealed second.

Physical constraints and context. In contrast, Fig. 2(d) visualizes the com-
plete traces of the three boxes in line with the (physical) constraints and locations
of the process. We note three basic (physical) principles that hold for this pro-
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cess: (P1) for a physical object to be present at/removed from a location, the
physical load/unload activity of that location must have involved this physical
object; (P2) activities are performed at physical locations (stations) and the
physical object they operate on must be at that location; (P3) physical objects
that are consistently kept at the same (relative) spatial location can consistently
be distinguished from each other (e.g. positions in the tray/on a conveyor belt).

Combining P1-P3 with context knowledge about which activities move or
handle physical objects at which locations (c.f. Fig. 1) allows to infer the miss-
ing identifiers as follows: Activities Fill and Seal process boxes at distinct loca-
tions (the Fill and Seal Station), while physical (Un)LoadSS and (Un)LoadFS
activities move a box into/out of these locations. Physical activities LoadAL and
UnloadAL move a Tray of boxes into/out of the AssemblyLine containing the lo-
cations of the Seal and Fill station. (1) From #b(e10) = b1 we know that b1 is at
the Seal Station; by P1, box b1 must have been moved into/out of the Seal Sta-
tion: #b(e9) = #b(e13) = b1. (2) From #b(e10) = b1,#b(e15) = b2,#b(e18) = b3
we know that b1, b2, b3 are at the Seal Station and thus at the AssemblyLine;
by P1 they must have been moved into/out of the AssemblyLine resulting in
multi-valued #b(e1) = #b(e20) = {b1, b2, b3}. (3) Box #b(e9) = b1 is at location
#p(e9) = 1 in the Tray; from b1 ∈ #b(e1) = #b(e20) follows that b1 at p = 1 is
at the AssemblyLine from time t1 to t20. By P2, P3 and #p(e5) = #p(e7) = 1
we know that e5 and e7 must have operated on the box with p = 1 at the fill
station, resulting in #b(e7) = b1. (4) From #b(e5) = #b(e7) = b1 we know that
b1 is present at the Fill Station from t5 to t7. From P2 follows that e6 must
operate on a box present at the Fill Station, thus #b(e6) = b1. Applying this
reasoning consistently infers all identifiers shown in Fig. 2(d).

The applied contextual knowledge is not a process model, but knowledge of
the physical constraints of a process: (C1) which activities process which kind of
physical objects at which locations, (C2) which physical activities move which
kinds of physical objects into/out of locations, (C3) relations between locations
and (C4) relations between individual physical objects and batches.

Problem statement. The problem we address in this paper is how to encode
such contextual knowledge of the physical constraints of a process to infer missing
entity identifiers to obtain complete traces as they likely have happened in reality.
We assume as input: (I1) an event table T where each event has a timestamp,
activity and the top-level location (equipment), and each entity n ∈ ent(T ) has
at least one event e′ ∈ E,#ent(e) 6=⊥, and (I2) contextual information about
the physical constraints of a process, i.e., C1-C4 stated above. Given I1 and
I2, we want to (O1) infer for each event the (likely) entities involved such that
(O2) the resulting entity traces describe a consistent execution of the process
matching the (physical) context. The latter can be validated by replaying the
log on a process model, though the model itself is not a required input. Next,
we introduce a model to encode context knowledge of physical constraints (i.e.
I2) and how to use it for inference (i.e., O1,O2).
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4 Inferring Entity Identifiers from Context

We now describe a new method for inferring identifiers from context. First,
we illustrate the basic idea on how to define and use context information for
inference. Then we model event data and its context in an event knowledge graph
(EKG) by showing how it can be refined to reflect a use case and extended to
include contextual information. Finally, we formally define an inference rule (IR)
along with an example and the semantics of rule application on EKGs.

4.1 Basic Idea

Here we illustrate how to encode and use context information to infer missing
entity identifiers on a part of the log repeated in Fig. 3.

Fig. 3. Example on how to in-
fer missing entity identifiers
using context information.

The log has event e10 with activity Seal for
box b1 in equipment 3012. The physical context
described in Fig. 1 shows that Seal occurs at the
Seal Station within equipment 3012. The log con-
tains events e9 and e13 with activities LoadSS and
UnloadSS which are are not correlated to a box,
i.e. #b(e9) = #b(e13) =⊥. Context (c.f. Fig. 1)
shows that (1) activities LoadSS and UnloadSS
operate on a box, thus e9 and e13 have incomplete
information, and (2) these activities occur as the
same location as e10 (the Seal Station of equip-
ment 3012). From principle (P1), b1 must have
been loaded into the Seal Station before t10 and
unloaded from Seal Station after t10, e9 and e13
are the first preceding load event and succeeding
unload event, hence #b(e9) = #b(e13) = b1. Even
though events e11 and e12 occur in between e10 and e13, they are not considered
simply because they occur at a different location.

Fig. 3 (bottom) schematically visualizes this reasoning over the context of
the events as an inference rule. In the following subsections, we discuss how to
precisely define and apply such inference rules on event data.

4.2 Modeling Context in Property Graphs

The rule and its application we illustrated in Fig. 3 reasoned over events corre-
lated to multiple entities, and their context of activities (with properties) and
locations (see C1-C4 in Sect. 3). We now show how to formally model event data
with such contextual information using event knowledge graphs (EKGs).

We first recall the underlying data model of labeled property graphs (LPG),
the specific model of EKGs, and how the incomplete log of Fig. 3 is modeled
as an EKG. Afterwards, we extend the meta-model of EKGs with contextual
information and define rules over these extended EKGs.
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Fig. 4. Schematic meta-model; (a) basic EKG meta-model [8]; (b) extended meta-
model; (c) extension by this work; (d) refined meta-model for use case.

Existing Models. An LPG G = (N,R,Attr,#, Lab, λ) has Nodes N , relation-
ships R, attributes Attr and a partial attribute value function # : (N ∪ R) ×
Attr ↛ V al, where r ∈ R defines the edge −→r = (nsrc, ntgt) ∈ N × N . Each
node n ∈ N has labels λ(n) ∈ 2Lab; each relationship r ∈ R has a single label
λ(r) ∈ Lab. We write n ∈ ℓ if n ∈ N, ℓ ∈ λ(n) and (n, n′) ∈ ℓ or n ℓ n′ if r ∈ R,
−→r = (n, n′), λ(r) = ℓ.

An Event Knowledge Graph (EKG) is an LPG G with node labels Event,
Entity and relationship labels corr (“event correlated to entity”), and df (“event
directly followed by event”) so that (1) Event and Entity nodes are disjoint, (2)
each e ∈ Event has #time(e) ∈ Time and #act(e) ∈ Act defined and (3) each
df-relationship r ∈ df,−→r = (e, e′) defines that e′ directly follows e from the
perspective of entity r.ent = n ∈ Entity.1 Fig. 4a shows this basic meta-model.

A basic extension to the EKG (see Fig. 4b) adds relationships n1 rel n2

between n1, n2 ∈ Entity and relationships e observed c describing that e ∈ Event
belongs to event class c ∈ Class, e.g. a particular type of activity [8].

The standard EKG construction from an event table with entities creates
Event, Entity and Class nodes and corr, df and observes relationships [8]. The
procedure is as follows: (1) each event record is translated into an Event node;
(2) infer entity node n with #type(n) = ET if there is an Event node e with
#ET (e) = n and add e corr n (e is correlated to n); (3) infer df-relationships
between events correlated to the same entity node n; (4) infer Class nodes c with
#id(c) = a if there is an Event node e with #act(e) = a and add e observed c.

In case of incomplete information in the event table, step (2) results in in-
complete correlation (corr) relationships and step (3) results in incomplete and
false df-relationships.

1 Formally, let e, e′ ∈ Event be correlated to the same entity n ∈ Entity, (e, n), (e′,
n) ∈ corr: e df e′ holds iff #time(e) < #time(e

′) and there is no other event e′′ ∈
Event, (e′′, n) ∈ corr between e and e′, i.e. #time(e) < #time(e

′′) < #time(e
′).
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Refining the meta-model to reflect the use case. For a concrete applica-
tion, the generic schema of Fig. 4a+b is refined by distinguishing different types
of entities and their relationships through dedicated labels. Fig. 4d (ignoring
Activity and Location nodes) shows the refined schema for our running example
showing 3 types of entity nodes for Equipment, Box and BatchPosition. Storing
semantic information in labels simplifies specifying the context of events com-
pared to the generic schema of [8,9] where entity and relationship semantics were
expressed as node and relationship properties only.

To reflect the refinement in the EKG, the procedure to infer Entity nodes
(step 2) is changed. We infer a node n with labels λ(n) = {entity,ET} if there is
an Event node e with #ET (e) = n; then relationship e corr n is added as usual.
The automatic construction of the log of Fig. 3 yields the EKG of Fig. 5a+b.

Adding Context. While an EKG models entity context of an event, it does not
model the activity and location context. We therefore extend the basic schema
of EKGs (Fig 4a+b) to model the Activity and Location of events as shown in
Fig. 4c: we introduce node labels Activity and Location and relationship labels
at, is and part_of. Each Event observes a Class that is an Activity at a specific
Location. A Location can be directly part_of another Location2.

We now discuss how to extend such an EKG by Activity and Location nodes.
This requires domain knowledge about activities and locations which are as-
sumed to be specified as records in tabular form similar to event tables (see Tab.
2). Given such records, the EKG is extended by adapting the procedure of [8] as
follows: for each activity record a we treat the attribute #activity(a) as a unique
identifier and create a node act ∈ Activity and set #prop(act) = #prop(a) for each
prop ∈ Attr in the activity record. Location nodes l are imported similarly. We
then add the relationship c is a for c ∈ Class, a ∈ Activity iff #id(c) = #activity(a)
and add the relationship l part_of l′ for l, l′ ∈ Location iff #id(l

′) = #part_of (l).
To add the at relationship between Class and Location nodes, we require a third
table specifying for each activity the location at which it happens (see Table
2). For each record the corresponding Class node c and Location node l is deter-

2 Formally, two locations l, k ∈ Location have l part_of k iff the location represented
by l is physically part of the location represented by k and there is no other m ∈
Location such that l part_of m part_of k

Table 2. Records containing contextual data.

Activity Records
activity type subtype entity

type
LoadAL physical load box
UnloadAL physical unload box
LoadFS physical load box
UnloadFS physical unload box
Fill admin - box
.. .. .. ..

Location
Records

id part of
AL -
FS AL
SS AL

Relation
Records

activity at
LoadAL AL
UnloadAL AL
LoadFS FS
UnloadFS FS
Fill FS
.. ..
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Fig. 5. Partial instance of the EKG

mined, then the relationship c at l is added. Fig. 5 shows a (partial) instance of
the EKG obtained from the incomplete log (Fig. 2) extended with Activity and
Location nodes based on the records and relations in Tab. 2.

4.3 Inference Rules

We now have an EKG G extended with context information where corr relation-
ships are incomplete due to missing information in the underlying event table.
As df-relationships are unreliable due to missing corr relationships, we remove all
df-relationships from G. We infer the missing corr relationships based on which
we can compute reliable df-relationships. Modeling event context in an EKG
enables us to infer missing corr relationships by defining local rules describing
contextual patterns in EKGs. We first define the rules in general, then present
a first example and then define the semantics of rule application on EKGs.

We define an inference rule as a simple graph-transformation pattern in an
EKG G that defines for nodes n1, . . . , nr a “left-hand-side” (LHS) graph pattern
specifying the context from which missing relationships can be inferred. The
“right-hand side” (RHS) of the rule are then relationships from n1, . . . , nr to
other nodes in the LHS; e.g. adding corr relationships between events and entities
provides the missing identifiers.

Formally, an inference rule IR = (G,Nincomplete, Rinferred, c,m) has an EKG
G = (N,R,Attr,#, Lab, λ) according to a refined meta-model (e.g. Fig. 4c). The
nodes Nincomplete ⊆ N are the nodes for which relations shall be inferred. The
RHS of IR is defined by the relations Rinferred ⊆ R with #RHS(r) = True,
∀r ∈ Rinferred so that for each r ∈ Rinferred exists n ∈ Nincomplete and m ∈ N
with −→r = (n,m). The LHS of IR is G without Rinferred, i.e., LHS (IR) = (N,
R \ Rinferred, Attr,#, Lab). Further, IR defines an ordering condition c and a
minimization condition m over the properties of the nodes N in G to limit the
matches of the LHS.
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Fig. 6. Inference rule detailing the short-hand nota-
tion of Fig. 3.

For example Fig. 6 de-
scribes an inference rule based
on principle (P1) explained
in Sect. 4.1. It infers the
unknown entity identifiers of
load and unload events f0 and
f2 from event f1 occurring in
between f0 and f2 at the same
location.

Fig. 6 depicts the LHS of
the rule by solid edges. It de-

fines three events (f0, f1, f2 ∈ Event). The activity and location of each event
fi is modeled through the event class fi observed ci, ci ∈ Class where each class
is related to an activity ci is ai, ai ∈ Activity. Specifically, by the properties
specified for a0, a1, a2 event f0 and f2 observe a physical loading and unload-
ing activity for a box while f1 observes any activity for a box. The events
are observed at the same location ℓ by the relationships fi observed ci at ℓ,
ℓ ∈ Location, i = 1, 2, 3. Furthermore all events are correlated to the same
equipment fi corr eq ∈ Equipment, i = 1, 2, 3, and only f1 is correlated to
box b, i.e., f1 corr b ∈ Box while f0 and f2 are not correlated to a box, i.e.,
Nincomplete = {f0, f2}.

Ordering condition c: #time(f0) ≤ #time(f1) ≤ #time(f2) restricts the LHS
to events f0,f1,f2 that follow each other in time. Minimization condition m:
minimize #time(f2)−#time(f0) restricts the LHS to only those f0, f2 such that
no other (un)load events happen in between f0 and f2. m also implies that f0,
f2 are the first preceding load event and first succeeding unload event w.r.t. f1.
Note that the LHS cannot rely on df-relationships to express ordering of the
events as df-relationships are incomplete due to incomplete corr relationships.

The RHS of the rule is Rinferred = {r0, r2} with −→r0 = (f0, b) and −→r2 = (f2, b)
(indicated by red dashed edges in Fig. 6, and formally #RHS(r0) = #RHS(r2) =
True). Subsequently, we use the notation shown in Fig. 3 as short-hand for
inference rules, i.e., Fig. 3 denotes the rule of Fig. 6.

An inference rule IR = (G,Nincomplete, Rinferred, cond) is applied on an (in-
complete) EKG G′ as follows. An instance of LHS(IR) in G′ is a sub-graph of
G that is injectively homomorphic3 to LHS, i.e., a mapping β : N 7→ N ′ from
nodes of LHS(IR) to nodes of G′ (called binding) that respect the labels, prop-
erties and relationships between the nodes in N so that the ordering condition
c[N/β(N)] (replacing the variables (nodes of LHS(IR)) in c with the nodes of G)
evaluates to true. The empty condition c always evaluates to true. Then from all
instances of LHS(IR), pick the instances that minimize all conditions of m. In
case m is empty, all instances of LHS(IR) are picked. For each minimal instance
LHS(IR) in G′ with binding β, apply IR by extending G′ by the RHS of IR,

3 Formally, we define a mapping f : G 7→ G′ for G = (N,R,Attr,#, Lab, λ) and
G′ = (N ′, R′, Attr,#, Lab, λ) by f : N 7→ N ′ where for any u, v ∈ N holds: f(u) =
f(v) ⇒ u = v (injective), and (u, v) ∈ R ⇒ (f(u), f(v)) ∈ R′ (homomorphic).
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i.e., add a new relationship r∗ to G′ for each r ∈ Rinferred,
−→r = (e, n) so that

λ′(r∗) = λ(r),
−→
r∗ = (β(e), β(n)).

For example, LHS of Fig. 6 has an instance in G of Fig. 5 by binding
β : f0 7→ e9, f1 7→ e10, f2 7→ e13, b 7→ Box1, eq 7→ Equipment3012, c0 7→ cLoadSS ,
c1 7→ cSeal, c2 7→ cUnloadSS , ℓ 7→ SealStation, a0 7→ aLoadSS , a1 7→ aSeal and
a2 7→ aUnloadSS . Note that β respects LHS as all labels, properties and relation-
ships specified in LHS also hold in G. Further, c[LHS/β(LHS)] = #time(e9) ≤
#time(e10) ≤ #time(e13) holds and #time(e13)−#time(e9) minimizes. Applying
the RHS adds corr relationships −→r9 = (e9, b1) and −→r13 = (e13, b1)

The complete inference procedure using a set of rules {IR1, . . . , IRk} on an
EKG G (with added context) is: (1) remove all df-relationships from G, (2)
repeatedly apply each IRi until no more relationships are added to G, (3) infer
the df-relationships (now based on complete corr-relationships).

5 Application and Evaluation

We now show how to translate the three basic principles (P1-P3) for physical
objects stated in Sect. 3 into inference rules. The rules are implemented as queries
over the Neo4j graph DB. We report on their use in an industrial use case.

5.1 Inference Rules

Fig. 7. Rules A, B, and C

We provide five inference rules defined in the
model of Sect. 4.3 that we derived from the prin-
ciples (P1-P3) of Sect. 3.
Inference for one level Fig. 7 shows two rules
to infer missing entity identifiers for an object
at a location L using the short-hand notation
introduced in Sect. 4.1, see App. B for EKG no-
tation. Rule A is explained in Sect. 4.1; from an
event f1 with known identifier, we can infer the
identifiers for the load and unload events f0 and
f2 at the same location L. Rule B is simply the
reverse of Rule A; based on the load and unload
events of a location, we infer the missing iden-
tifiers of the events happening at that location
by propagating downwards. Note that any rule
can correlate any number of entities to an event.
For Rule A, this is desired behavior: all physi-

cal objects present at location L need to be loaded and unloaded from L. For
Rule B, it depends on the context whether this is desired behavior. If f1 should
only be correlated to one of the objects loaded/unloaded during f0 and f2, more
information is required which will be explained in Rule E.



Inferring Entity Identifiers using Event Knowledge Graphs 13

Fig. 8. Rules D and E

Inference between entities Rule C (Fig. 7)
is derived from principle (P3); from an event f0
associated both to a box b1 and a batch position
x, we can infer that box b1 is at pos x in the tray.
Inference for multiple levels Rules D and E
of Fig. 8 use the same principles as Rule A and B
respectively for locations containing other loca-
tions. As the part of relation is transitive, prin-
ciples (P1) and (P2) can be also used to infer
missing entity identifiers on higher/lower loca-
tion levels via part of (see Fig. 4) or part of* 4

Rule D infers missing identifiers through multi-
ple levels by propagating upwards and Rule E
downwards through multiple levels.

Rule E also deals with events that should
only be correlated to one of the objects

loaded/unloaded during f0 and f4. As stated before, additional information is
required for correct inferences such as the relative spatial position of an object
(P3). Hence, events happening at a lower-level location L correlated to position
x can be related to entity b1 at pos x that is loaded into K.

These rules allow correlating multiple entities to the same events, which
allows to infer, e.g., batching, when physically possible, or reveal ambiguous
context information when physically impossible.

5.2 Implementation and Demonstration

We implemented the approach of Sect. 4 and rules A-E of Sect. 5.1 as Cypher
queries over the Neo4j graph database; see App. C and https://github.com/
Ava-S/EKG_Inference. Applying the implementation on an incomplete event
table of our running example infers the correlation and traces shown in Fig. 9 as
follows: (1) applying Rule D propagates b1, b2 and b3 from Seal events upwards to
LoadSS, UnloadSS, LoadAL and UnloadAL events; (2) applying Rule C creates
the at_pos relation between Box and BatchPosition nodes using LoadSS events
which are now correlated to both these entities; (3) applying Rule E propagates
entity identifiers from (Un)LoadAL events downwards to LoadFS and UnloadFS
events; (4) applying Rule B propagates identifiers from (Un)LoadFS events to
Fill events. The corresponding EKG after inference of the event table of Fig. 9
is shown in App. A.

Recall that any rule can correlate any number of entities to an event. Rule
D assigns multiple boxes (b1, b2 and b3) to the LoadAL event e1 and UnloadAL
event e20. Even though Rule D is unaware of batching events, it is still able to
4 Formally, l partof∗ k for l, k ∈ Location iff l = k, or l partof k, or there exists m2, ..,
mi ∈ Location, for i ∈ N, i ≥ 2 such that l part of m2 partof .. partof mi partof k.

https://github.com/Ava-S/EKG_Inference
https://github.com/Ava-S/EKG_Inference
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Fig. 9. An incomplete event table
of running example.

infer multiple identifiers to batching events.
The resulting traces align with the process in
Fig. 1 and the physical constraints.

5.3 Industrial Use Case: NXP’s Sawing
Process
The proposed method was applied on an indus-
trial use case; the sawing process at NXP Semi-
conductors (NXP). NXP is a globally operating
company that designs, develops, and manufac-
tures Integrated Circuit (IC) chips. We focus
on the dicing step in which wafers are sawn into
dies (unpackaged chips). The sawing equip-
ment has several sensors installed to record
the different events operating on the wafers.
The collected data covered a week of manufac-
turing. Data inspection revealed that some en-
tity identifiers were recorded incorrectly. These
identifiers were dropped during data cleaning
and needed to be inferred.
Process Description Multiple wafers are loaded into the sawing equipment
together in a rack for wafers. All wafers are then handled in parallel as follows: the
wafers are aligned and cut at the cutting station, and then cleaned at the cleaning
station. Finally the rack with all cut wafers is unloaded. A rack has multiple slots
containing one wafer each; wafers in the same rack are distinguished by their slot
position in the rack.
Activities and events Table 3 gives an overview of the different activity
types in NXP’s sawing process, how many activities of this type the process has
and their frequency. Only 3/24 activities recorded wafer identifiers, resulting in
≈ 6250/7250 events without wafer identifier.
Inferring missing information The event data and contextual data was mod-
elled with an adapted meta-model of Fig. 4c to reflect the use case of NXP. We
applied Rules A-E (adapted to the NXP meta-model) to infer the missing wafer
identifiers. Construction of the complete EKG and inference required less than
30 seconds, resulting in 7225/7250 events correlated to at least one wafer.
Table 3. Overview of the activity types and whether the wafer identifiers are present.

type subtype entity wafer identifier(s) # activities # events
administrative - wafer ✓ 3 ≈ 1000
administrative - wafer - 10 ≈ 3100
physical load (batch of) wafers - 1 ≈ 50
physical load wafer - 5 ≈ 1550
physical unload wafer - 5 ≈ 1550

Total 24 ≈ 7250
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Validation We validated the correctness of the inferred identifiers through
alignment-based conformance checking. A proclet reference model of the multi-
entity process was created and validated with NXP [19]; the procles describes
for each entity type (e.g. wafer, rack) a life-cycle model as state machine with-
out concurrency. The proclet model was added to the EKG by modeling df_c
relationships between Class nodes (see Fig. 4 and [9]), where c df_c c′ describes
that activity c can be directly followed by c′ for a particular entity, e.g. wafer
or a rack. This allowed us to measure whether all df-relationships of a wafer w
form a complete trace according to the wafer life-cycle using the technique in
[9, Sect 6.4]: we checked whether each df-relationship (e, e′) of w has a corre-
sponding df_c-relationship (c, c′) for wafers with e observes c and e′ observes c′.
While for the extracted data, 0 wafers had a complete trace, after inference 88%
had complete traces, the remaining 12% of incomplete traces were attributed to
non-recorded or double-recorded events.

6 Conclusion

In this paper, we studied the problem of inferring missing entity identifiers in
the generalized setting of multi-entity processes (e.g., with batching) that are
executed in a physical environment. We introduced a new method for extending
incomplete event data with context information about the physical environment
(locations of activities) using event knowledge graphs (EKGs) [9]. We showed
that inference rules to infer missing identifiers from the context can be directly
modeled in terms of EKGs based on simple principles of physical processes.
An industrial case study proved that our technique is applicable to industrial
processes both in terms of quality of inference and performance.

Our work shows that missing identifiers can be inferred efficiently with sim-
ple rules even when no normative control-flow model is available or applicable
(i.e., multi-entity processes). Further, we demonstrated that event knowledge
graphs are a versatile data model to integrate observational data and structural
and contextual knowledge to solve industrially relevant problems. These insights
suggest further viable research for integrating event data and process knowledge
for inference in processes, not just limited to missing identifiers. Our study only
explored inference rules for multi-entity interactions in the form of batching 1:n
synchronization and hierarchical locations. While the model of EKGs and the
definition of inference rules are not limited to such processes, further research
is needed to explore inference for processes with other forms of synchronization
and other forms of physical context knowledge.
Acknowledgement. The research underlying this paper was partially sup-
ported by NXP Semiconductors and by AutoTwin EU GA n. 101092021.
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A Complete EKG of Running Example

Fig. 10. Complete instance of Event Knowledge Graph after inference for the Event
Table in 9(top)
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B Extended Inference Rules

B.1 Rule A: propagate upwards, one level

Fig. 11. Inference Rule detailing the short-hand notation of Fig. 7 Rule A.

B.2 Rule B: propagate downwards, one level

Fig. 12. Inference Rule detailing the short-hand notation of Fig. 7 Rule B.

B.3 Rule C: Create at pos relation between entities

Fig. 13. Inference Rule detailing the short-hand notation of Fig. 7 Rule C.
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B.4 Rule D: propagate upwards, multiple levels

Fig. 14. Inference Rule detailing the short-hand notation of Fig. 8 Rule D.

B.5 Rule E: propagate downwards, multiple levels

Fig. 15. Inference Rule detailing the short-hand notation of Fig. 8 Rule E.

C Queries

Rules A, B, D and E determine the load and unload events at the different
location levels such that the time difference is minimized. Given that all events
are recorded correctly, the constraint that the administrative event should be
in between a pair of load and unload events can be relaxed by using the first
preceding load event (or first succeeding unload event) w.r.t. the administrative
event. With this relaxation, the inference rules are also applicable when there are
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only load events (no unload events). The shown queries determine the inference
using the first preceding load events. The queries can be adapted without loss
of generality to use the first succeeding unload events.

C.1 Rule A; propagate upwards, one level

1 MATCH (f1: Event) - [:CORR] -> (b: Box)
2 MATCH (f1) - [:CORR] -> (equipment: Equipment)
3 MATCH (f1) - [:OBSERVED] -> (c1: Class) - [:AT] -> (l: Location)
4 WITH f1, l, equipment, b
5 CALL {WITH f1, l, equipment
6 // ensure f0 is a load event operating on a box
7 MATCH (f0: Event) - [:OBSERVED] -> (c0: Class)
8 - [:IS] -> (a0: Activity {type: 'physical', subtype: 'load', entity: 'Box'})
9 MATCH (c0) - [:AT] -> (l)

10 MATCH (f0) - [:CORR] -> (equipment)
11 WHERE f0.timestamp <= f1.timestamp
12 RETURN f0 as f0_first_preceding // find the first preceding f0
13 ORDER BY f0.timestamp DESC LIMIT 1}
14 MERGE (f0_first_preceding) - [:CORR] -> (b)

C.2 Rule B; propagate downwards, one level

1 MATCH (f1: Event) - [:CORR] -> (equipment: Equipment)
2 MATCH (f1) - [:OBSERVED] -> (c1: Class) -[:AT]-> (l: Location)
3 MATCH (c1) - [:IS] -> (a1 :Activity {entity: 'Box'}) // ensure f1 should operate on a box
4 WITH f1, equipment, l
5 CALL {WITH f1, equipment, l
6 // ensure f0 is a load event operating on a box
7 MATCH (f0: Event)-[:OBSERVED]->(c0: Class)
8 - [:IS] -> (a0: Activity {type:'physical', subtype: 'load', entity:'Box'})
9 MATCH (c0) - [:AT] -> (l)

10 MATCH (f0)-[:CORR]->(equipment)
11 WHERE f0.timestamp <= f1.timestamp
12 RETURN f0 as f0_first_prec // find the first preceding f0
13 ORDER BY f0.timestamp DESC LIMIT 1
14 }
15 // only merge when f0_first_prec is actually related to a Box
16 WITH f1, [(f0_first_prec)-[:CORR]->(b: Box) | b] as related_b
17 FOREACH (b in related_b |
18 MERGE (f1) - [:CORR] -> (b)
19 )

C.3 Rule C: create at pos relation between entities

1 MATCH (e: Event) - [:CORR] -> (b: Box)
2 MATCH (e) - [:CORR] -> (bp: BatchPosition)
3 MERGE (b) - [:AT_POS] -> (bp)
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C.4 Rule D: propagate upwards, multiple levels

1 MATCH (f2: Event) - [:CORR] -> (b: Box)
2 MATCH (f2) - [:CORR] -> (equipment: Equipment)
3 MATCH (f2) - [:OBSERVED] -> (c2: Class)
4 - [:AT] -> (l: Location) - [:PART_OF*0..] -> (k: Location)
5 WITH f2, k, equipment, b
6 CALL {WITH f2, k, equipment
7 // ensure f0 is a load event operating on a box
8 MATCH (f0: Event) - [:OBSERVED] -> (c0: Class)
9 - [:IS] -> (a0: Activity {type: 'physical', subtype: 'load', entity: 'Box'})

10 MATCH (c0) - [:AT] -> (k)
11 MATCH (f0) - [:CORR] -> (equipment)
12 WHERE f0.timestamp <= f1.timestamp
13 // find the first preceding f0
14 RETURN f0 as f0_first_preceding
15 ORDER BY f0.timestamp DESC LIMIT 1}
16 MERGE (f0_first_preceding) - [:CORR] -> (b)

Note that Rule A is also applied when Rule D is applied, then there are zero
part of relationships and l = k.

C.5 Rule E: propagate downwards multiple levels

1 MATCH (f2: Event) - [:CORR] -> (bp: BatchPosition)
2 MATCH (f2) -[:CORR] -> (equipment: Equipment)
3 MATCH (f2) -[:OBSERVED] -> (c2: Class)
4 -[:AT]-> (l: Location) -[:PART_OF*0..] ->(k: Location)
5 // ensure f2 should operate on a box
6 MATCH (c2) -[:IS] -> (a2: Activity {entity: 'Box'})
7 WITH f2, equipment, l, bp
8 CALL {WITH f2, equipment ,l
9 // ensure f0 is a load event operating on a box

10 MATCH (f0: Event)-[:OBSERVED]->(c0: Class) -[:IS]
11 -> (a0: Activity {type:'physical', subtype: 'load', entity:'Box'})
12 MATCH (c0) -[:AT] -> (k)
13 MATCH (f0)-[:CORR]->(equipment)
14 WHERE f0.timestamp <= f2.timestamp
15 // find the first preceding f0
16 RETURN f0 as f0_first_prec
17 ORDER BY f0.timestamp DESC LIMIT 1
18 }
19 // only merge when f0_first_prec is actually related to a Box
20 WITH f2, [(f0_first_prec) -[:CORR]-> (b: Box) -[:AT_POS] -> (bp) | b] as related_b
21 FOREACH (b in related_b |
22 MERGE (f2) -[:CORR] -> (b)
23 )
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