Implementing Object-Centric Event Data
Models in Event Knowledge Graphs

Ava vaevels*[0000—0003—0992—208X]7 Dirk Fahland*[0000_0002_1993_9363], and
Marco MontaliT [0000—0002—8021—3430]

* Eindhoven University of Technology, Eindhoven, The Netherlands
{a.j.e.swevels, d.fahland}@tue.nl
t Free University of Bozen-Bolzano, Bolzano, Italy montali@inf.unibz.it

Abstract. Recent advances in object-centric process mining necessi-
tated the standardization of object-centric event data (OCED). An IEEE
taskforce has developed a “meta-model” for OCED, but there is no ex-
isting reference implementation or automated techniques to transform
legacy data into OCED. This task requires domain-specific knowledge
about the semantics of the legacy data in order to make explicit how
events act on various inter-related data objects and their attributes. We
propose a semantic header that defines how extracted legacy data maps
to OCED concepts and the domain-specific reference ontology using PG-
schema. We automatically translate the header into database queries
to construct an event knowledge graph that is compliant with OCED
and the domain ontology using a declarative extract-load-transform ap-
proach. The approach has been implemented and demonstrated on 7
real-life datasets, making it one of the first attempts to make OCED
operational.

Keywords: OCED - Semantic Header - Event Knowledge Graph - PG-
Schema - ELT Framework

1 Introduction

The process mining field has recently witnessed a surge in the analysis of real-
life processes that (co-)evolve multiple, interrelated objects. Several works have
highlighted the intrinsic limitations of conventional case-centric process mining
techniques [TITTIT2/6] when analyzing and representing such processes. This has
fueled the new wave of so-called object-centric process mining (OCPM) [2], with
some seminal techniques targeting the discovery of process models dealing with
multiple objects and their interaction [16/3[7], and some process mining vendors
(notably MyInvenio/IBM and Celonis) proposing solutions in this space.
Further research and adoption of OCPM relies on a commonly accepted data
model for such processes that can simultaneously describe the structural dimen-
sion (objects, relationships, and their attributes) and the temporal dimension
(how events create and change structure over time). Although the previously pro-
posed OCEL format [I3] is a lightweight representation of object-centric event

2 A. Swevels et al.

data, it lacks concepts to express the nature and changes of relationships. To
fill this gap, the IEEE task force on process mining has started an initiative
to standardize object-centric event data (OCED), which is still under discus-
sion and so far only comes with a proposed meta—modeﬂ but misses a reference
implementation and techniques to extract OCED event logs from legacy sources.

Sect. [2] recalls the OCED proposal and addresses two-subproblems related
to the implementation of OCED along the process mining pipeline: (i) how to
represent and store OCED in a way that enables process mining usage, and
(i) how to transform data from legacy systems into OCED formatted data.
Both subproblems are intertwined with the more general problem of linking
legacy data with a corresponding semantic description so that the transformed
data conforms to the knowledge of the domain [T9J20]. Specifically, the OCED
proposal is defined on the level of a “metamodel” and has to be instantiated by
refining generic event, object, and relation concepts to obtain the actual data
model for a given data set.

We address these challenges by refining the model of event knowledge graphs
(EKGs) [12], which naturally model events, objects, and their relations for pro-
cess mining, to the OCED proposal. This allows us to represent and store OCED
(and any domain-specific refinement of OCED) as a Property Graph (PG) [§] in
a standard graph DB system. Our implementation consists of three steps where
the first two steps define the “semantic header” of the data, which specifies data
representation and transformation in line with data semantics, and the third
step performs the transformation on the actual instance-level data:

(1) We formalize the OCED proposal as a PG-schema [5], a recent proposal
for modeling graph-based data schemas, providing a common interface for pro-
cess querying. The schema defines a base ontology for representing and trans-
forming OCED, which includes a semantic layer (defining the OCED concepts)
and a record layer (defining concepts for generic data records from a legacy
system and how they are related to the semantic layer).

(2) We demonstrate how to use PG-schema’s inheritance mechanism to spe-
cialize this base ontology into a domain-specific reference ontology which also
includes a semantic layer (defining the domain’s semantic objects, events, and
relations), and a record layer (defining in which legacy records the domain-level
concepts are stored). Furthermore, we extend these structural definitions with
rules to transform data in the record layer into nodes and relationships of the
semantic layer, similar to ontology-based data access [19].

(3) We provide a declarative extract-load-transform (ELT) framework, called
OCED-PG. We load the legacy data records into the graph DB as a record layer.
We then transform the data records into OCED by automatically translating the
transformation rules of step (2) into queries over the record layer.

This paper presents two major contributions: the semantic header and
OCED-PG, an ELT framework implemented in a Python library (PromG). All
in all, this paper provides one of the first attempts to make OCED operational,

L ¢f. the OCED Symposium ICPM 2022, https://icpmconference.org/2022/
program/xes-symposium/

https://icpmconference.org/2022/program/xes-symposium/
https://icpmconference.org/2022/program/xes-symposium/

Object-Centric Event Data Models in EKG 3

real process
"ground truth”

v
data <—> operations

gecords reconstruct
domain
%\8 raw |\ \
XJ provide
/

o7

;]
event |transform use
bject [~]
relation
records OCED I:I
IT systems data exchange PM solutions
data source

Fig. 1: Data exchange shall support consistent construction of a digital image
that is consistent with reality.

and we do so relying on graph database languages and technologies, avoiding
ad-hoc implementations allowing analysts to easily manipulate event data for
process mining tasks.

The rest of this paper is structured as follows: Sect. |2 reviews the OCED
proposal and discusses the challenges of its implementation. Sect. [3| presents a
concrete realization of a semantic header for OCED using PG-schema. Sect. [4]
gives an overview of OCED-PG. Finally, Sect. [5| evaluates the feasibility of our
approach and outlines the conclusions and limitations of this work.

2 Goals and challenges in implementing OCED formats

The technical goal of realizing a standardized OCED format is to provide a
unified interface for data exchange between source systems and process mining
solutions. This goal serves an analysis goal as visualized in Fig. I} an analyst
solving a process analysis task requires a fundamental understanding of how the
actual process operated on the underlying complex data (c.f. Sect. . As it is
too costly to inspect the reality of the process, the process and data dynamics
are recorded in IT systems, acting as a data source for (re)constructing a dig-
ital image of the real process. This image must be consistent with the process’
“ground truth” to let the analyst draw valid conclusions.

Consistency for object-centric processes requires: (C1) only showing events,
objects, and relationships that were observed in reality (i.e., avoiding convergence
and divergence [12]), and (C2) representing them in terms of the domain’s
semantic concepts [19J2002T9]. We now summarize how the OCED proposal
aids consistency, and then we identify concrete challenges for implementing any
(standardized) data format for OCED for process mining.

2.1 OCED Meta-Model

In order to ensure|(C1)| a working group in the process mining community has
been developing a more versatile event log standard [I8] resulting in the pro-

4 A. Swevels et al.

event
attribute value’

event
attribute name

object 121 object
*lattribute value; attribute name

1

4
event | + | object H object ‘
] L

* 1
- from‘ 'to
relation relation type
Fig. 2: Draft Object-Centric Event Data (OCED) Meta-Model circulated in
the Process Mining community for feedback.

o

event type

posal' shown in Fig. [2| The proposal tries to strike a careful balance between
a simple standard and increased expressivity over sequential event logs. It does
so by treating events, objects, relations, and their attributes as first-class citi-
zens and by using attributes, relations, and qualified relations between events
and objects to capture the structural dimension of the process in a graph-like
form [4JT4]. The proposal provides a base ontology for events, objects and re-
lations but does not define its semantics as these are domain-specific, and the
temporal dimension is only implicitly expressed through timestamps, enabling

but not fulfilling [(C2)|

2.2 Challenge: storage vs semantics

Data stored in source systems generally do not even meet criteria as their
data model is optimized for usage rather than analysis: objects are spread across
multiple tables, there are no events but only time-stamped records, relations are
expressed in various ways, and activities rarely indicate which objects, relations,
and attributes were involved [T6JT0]. Therefore, we argue that generating OCED
should address and separately (see Fig. . First, extract the data
from the source systems to generate a “raw record” ground truth of individual
observed events, objects, and relations based on knowledge of the source system
storage format. Then, use semantic information to transform the raw data into
OCED for PM analysis. We focus on subsequently.

In line with prior literature [I9J20J21)j9], we stand for a pragmatic, goal-driven
approach, arguing that such a semantics-aware transformation depends on the
analysis task: the task determines the level of granularity, detail, and required
representation of the data. This already holds for constructing classical event
logs, where the analyst may combine multiple attributes to define a suitable
case identifier or may refine activities. The range of options for OCED transfor-
mation is vast, so an OCED implementation must give the analyst the flexibility
to determine how the (extracted) raw data maps to the domain knowledge.
This gives the analyst the design space to build their analysis in line with the
ground truth. Building on ideas from ontology-based data access [19] and virtual
knowledge graphs [20], we propose to create a separate semantic header which
describes how the raw data maps to (C2a) OCED’s base ontology, and (C2b)
to the domain data model of the process, requiring a refinement of OCED to
represent specific domain concepts. For automation, the semantic header must
be rich enough to enable the (C2c) automated transformation from the raw

Object-Centric Event Data Models in EKG 5

data to a “domain-specific” OCED representation. Notably, pairing raw records
with a semantic header file holding the domain knowledge realizes also a light-
weight exchange format for OCED placing the work intensive transformation to
OCED to data import.

In the following, we tackle [[C2a)] to [[C2c)| through an entirely graph-based
approach. We extend the model of event knowledge graphs [12] to satisfy
and Using a graph-based representation allows us to specify simple
declarative transformation rules that we can automatically translate into graph
queries for automated translation to satisfy Although not as general as
full-fledged pipelines for mapping legacy relational data to case-centric [10J9)
and object-centric [21] event logs, this results in a pragmatic approach that is
fully grounded on graph-based representations, query languages, and underlying
graph DB technologies.

3 A Semantic Header for Object-Centric Event Data

In this section, we define the concrete realization of a semantic header for object-
centric event data, resorting to the PG-schema approach for property graphs [5].
The semantic header consists of a (i) base ontology including a semantic layer
encoding OCED and a record layer encoding raw data records and linking them
to the semantic layer, and (i) a reference ontology extending the base ontology
layers with domain-specific records, entities, events, and relations.

3.1 A Gentle Introduction to PG-Schema

A property graph database uses, as main storage mechanism, a property graph
(PG), which is a directed multi-graph where nodes represent objects and edges
represent relationships. The two main features of PGs is that nodes and relation-
ships come with labels and properties. Labels are used to type elements. While
nodes may be typed with multiple labels, each relationship has exactly one.
Furthermore, nodes and relationships carry properties, represented as attribute-
value pairs. PGs are typically schema-less, and only recent developments, espe-
cially PG-schema [5], have highlighted the need to define schemas for PGs.
PG-Schema defines property graph schemas via PG-Types and PG-Keys.
PG-Types deal with typing rules for nodes/edges, defining allowed types through
admissible combinations of labels and properties in nodes and edges, and also
constraining the types of edges that can be connected between nodes of certain
types. PG-Keys provide a range of integrity constraints over types, including
keys and participation constraints . Our work is currently limited to only include
PG-Types, consisting of node types, edge types and graph types. We describe
these constructs showing how they can be used to define a schema for EKGs,
following the structure presented in [I2]; this will also prove useful later, as it
will provide the basis for the PG-schema encoding of OCED. A PG-schema for
EKGs is given through the declaration of the graph type EKGType, illustrated
in Fig. [3] It consists of 3 node types characterized by labels Event, Entity and

6 A. Swevels et al.

:Activity fEvent R «:Entity
name STR activity STR ' entityType STR
OPEN time DATETIME id STR

OPEN OPEN

:observed

:DF rel

relType STR
Fig. 3: PG-Schema for graph type EKGType

Activity, for events, activities, and entities respectively, and 4 relationships with
labels corr (“event correlated to entity”), df (“event directly followed by event”),
rel (“entity related to entity”) and observed (“activity observed event”).

Node types are defined by their label and properties together with their data
type. No other properties or labels can be attached to a node type, unless the
keyword OPEN is declared among the properties or labels respectively. Further-
more, a property can be declared as OPTIONAL. Edge types are defined by their
source and target node, label and properties. The properties of an edge type and
the OPEN keyword are used similarly as with node types.

3.2 Base Ontology

Semantic layer: Encoding OCED as a PG-Schema We have formalized
and specified the OCED proposal using PG-schema in the semantic layer of the
base ontology (addressing [(C2a)|). The resulting graph type baseOntologyType

is presented next to the OCED proposal in Fig. [ib] (Semantic Layer) using the
attribeu\;znr:ame Hanri::z}n\tlalue

I event type H event - + 1{ object M ﬂbj::‘ I
' g b .

; D o |
| o B |
J object F 1 object I:

relation] relation type |

E object |{.+1[object
{ *|attribute value|: attribute name

(a) OCED Proposal

Semantic Layer ~ > {EntityAttri OPE
B
The qualifier is set as K 5
I L label or as property 1? """"
:Activity f{Event OPEN e — * . [:Entity OPEN
name STR time DATETIME [OPEN| sysld STR
OPEN observed .OPEN J —————— OPEN 1.0
4 +| Liobserve T 1 _extractedFrom R
--- ['extractedFrom . [0 | .
; +[Relation OPEN OPEN| t [extractedFrom
“loPEN JE |OPEN |
Record Layer . 1. 1.
1. - - ['extractedFrom
:EventRecord OPEN 1 EntityRecord OPEN AttributeRecord OPEN|
(OPEN OPEN) (OPEN J

(b) Visual representation of PG-Schema of baseOntologyType

Fig. 4: Side-to-side comparison of OCED as meta-model and as PG-Schema

Object-Centric Event Data Models in EKG 7

same color scheme for similar concepts. baseOntology Type stems from EKGType
in Fig.[3] and substantially modifies it in the following five aspects. (1) Property
entity Type is removed from the Entity nodes. Now, we allow for multiple labels,
as indicated by the keyword OPEN. Hence, instead of indicating the entity type
as a property, it is specified by a dedicated label. In the same way, since there
can be several types of events, the Event node now also allows for multiple labels.
(2) The attributes of an entity that evolve over time are modeled as separate
EntityAttribute nodes. (3) The relationship :rel can be modeled as a relationship,
or reified as a :Relation node. In the latter case, edges :from and :to indicate
the related entities and the direction of the relationship. The way in which
entities are related depends on the domain context and should be specified by
a label. Therefore, we permit additional labels through OPEN. (4) Since events
act not only on entities, but also on attributes and relationships, a relationship
is created from Event nodes to Entity nodes, EntityAttribute nodes and Relation
nodes. Again, how events act on entities, attributes, and relationships depend on
domain context. This qualifier can be set as a label or as a property (cf. OPEN).
(5) The DF relation has been removed as this is not part of OCED.

Record Layer The base ontology also consists of a record layer, as shown in
Fig. (Record Layer). This layer is used to lift raw data records into the
graph DB, and link them to the elements of the semantic layer - once the actual
instances of the semantic layer are defined, it can hence be removed, or kept
for provenance reasons. The record layer has 3 nodes with labels EventRecord,
EntityRecord and AttributeRecord, and a relationship with label extractedFrom,
indicating where a semantic layer node actually comes from. The nodes are
OPEN, implying they can have additional attributes and labels.

3.3 Example of a Reference Ontology

From now on, we use an example related to a library loan process to illustrate
how OCED-PG works. In this section, we use it to show how the base ontology
can be refined into a reference ontology using PG-schema’s inheritance mech-
anism as shown in Fig. |5| (addressing . Specifically, we extend baseOn-
tologyType (Fig. into libraryType to reflect the semantics of the process. A
Library holds Books in its catalog. Events with observed Activities borrow, extend,
return and update membership, are executed by a Member and act on Books or
on the MembershipAttribute (which a Member has as property). The borrowed
relation between Books and Members are created or removed by an Event. The
record layer reflects the source of the semantic layer nodes. Hence, we consis-
tently refine it as well, indicating that Events and Activities are extracted from
EventRecords, Members from MemberRecords, and so on.

4 Framework: OCED-PG

We now explain how actual (event) data can be stored in a graph DB using
the semantic header, following Sect. [3] To this end, we define OCED-PG which

8 A. Swevels et al.

Semantic Layer : F
4 1 [:Entity:Member :hasProperty
sysld STR J
1 :executedBy OPTIONAL name STR
:Activity T:Event B \ 0.5 1/)
activity STR {time DATETIME[— > ‘Relation:Borrowed | [—oborm |
-observed ! " [icreates|removes Vi ; . . vo.r
:actsOn :Entity:Book <——+——{:Entity:Library
sysld STR ! sysld STR
o5 OPTIONAL isbn13 STR [incaiaiog) 1
| — IE
1. i A 1V 1V 1x 1
‘EventRecord ‘EntityRecord EntityRecord ‘EntityRecord :EntityRecord :AttributeRecord
OPEN :MultipleBooksRecord| |:BookRecord OPEN :LibraryRecord OPEN | [:MemberRecord OPEN :SubscriptionRecord
activity STR OPEN libraryld STR memberld STR OPEN
time DATETIME | |booklds List<STR> OPEN OPTIONAL name STR subscription STR
OPEN OPEN OPEN OPEN
Record Layer

Fig.5: PG-Schema for libraryType capturing the domain knowledge of a library

loan process
AN Semantic N
ﬁ“ 2 Header

i Raw Record Nodes i Final Graph

(Event) Data
o e @ oP
Load % f \f ?

Dataset
2 Description

—
Extract Transform

AN AN)
.Csv || .csv o
O

Fig. 6: Overview of OCED-PG, a declarative ELT framework

]

is a Extract, Load, and Transform (ELT) framework outlined in Figure @ The
first step is to extract the (event) data from different sources into CSV files (see
Sect. . Then we load each record of the CSV files as a Record node in the
graph database. We ensure that the properties in these nodes are properly names
and typed using a data set description file (see Sect. . Lastly, we transform
the Record nodes into a new layer in the graph DB that captures the semantic
meaning of the records with automatically generated queries (see Sect. .

4.1 Extracting Data from Legacy Sources

The first step is to extract the original, legacy data, without attached seman-
tics into CSV files. Such data can be taken from multiple sources, for example,
SAP systems, production data, or APIs. Data sets may include event and/or en-
tity records. Timestamped event records document changes to the process and
associated data. Entity records describe entities with their properties.

For our technical example, we generated, through simulation, three data sets
containing (i) timestamped records of members executing activities, (i7) book
records, and (744) member records respectively. An overview is given in Tab.

4.2 Load Data

After extraction, we load the data set records into corresponding nodes of a graph
DB. This is automated using dataset description files containing a description
of each record attribute. Each attribute is described by its attribute name, the

Object-Centric Event Data Models in EKG 9

[Events (18616 records) [[Library books (5000 records)[[Members (1000 records) |
attribute column |[dtype attribute|column [dtype attribute column [dtype
timestamp |time TIME libraryld [library |[STR memberld [id STR
activity activity [STR bookId |id STR name name [STR
memberld |member |STR isbn13 isbnl3 |STR subscription |type STR
bookIds book ids|List[STR]||...

membership|type STR

Table 1: Overview of the simulated datasets for the library loan example

10)
® O O
_— _— — > X
Assign @ Create Nodes ~ Create ~ .
Record Labels Relationships SN
3) E)

®
Fig. 7: Overview of the different transformation rules in the Transform step

corresponding column name, the datatype (see Tab. [1]) and, optionally, a string
format to parse timestamp attributes. Each data set is loaded as follows: (i) using
a description file, the corresponding data set is loaded into memory; (i) for each
attribute, the corresponding column is renamed to comply with the syntactical
rules of the graph DB; (7ii) each record from the data set is loaded as a Record
node into the graph DB; (i) timestamp attributes are converted to date(time).

4.3 Transform

The last step of OCED-PG is to transform the raw Record nodes into an EKG
using the semantic header (addressing. The semantic header is concretely
stored as a JSON document that contains the definition of the reference ontology
(using the (OCED) constructs from the base ontology as supertypes). We extend
these structural definitions with three types of transformation rules: (%) rules to
assign labels to raw Record nodes; (4i) rules to create, from record layer nodes,
so-called semantic nodes, i.e., instances of the types defined in the semantic and
domain layers, (i) rules to create relationships between semantic nodes. Rules
of these three distinct types are applied in cascade, following the order shown in
Fig. [7| (record nodes are in gray). We detail next how these rules are formed.

Assign Record Labels rules. Since Record nodes may contain different types
of data, they are distinguished through specific labels. The semantic header in-
cludes, for each type of record, a label, the required and optional attributes, and
optionally a condition using the pattern shown in Listing [I.1(a). The transfor-
mation rule is automatically translated into a query that identifies all Record
nodes with the correct attributes and then assigns the appropriate label.

Semantic Node Creation rules. Semantic nodes are created based on their
presence in at least one record layer node. The semantic header includes, for each
semantic node, its labels, the required attributes, the optional attributes, and
from which record node it is extracted, following the pattern in Listing. [1.1{(b).
The transformation rule is translated into a query that identifies the correct
record nodes and then creates or merges a node with the correct labels and
attributes. Merging a node means that it is created if it does not exist, otherwise

10 A. Swevels et al.

(a) Semantic Header Input for Record Nodes Generated Query
(record: $record_labels 1 MATCH (record:Record)
WHERE $condition 2 WHERE $condition
{$required_attributes, 3 AND $required_attributes_not_null
OPTIONAL $optional_attributes}) 4 SET record:$record_labels
emantic eader I1npu or odes enerate uer
b) S tic Header Input for Nod G ted y
Record: (record:$record_labels) ! MATCH (record: $record_labels)
- 2 CREATE/MERGE ($node_name: $node_labels
Semantic Node: ($node_name:$node_labels 3 ?$set_requ%red_attrlbutes})
$required_attributes 4 SET $set_optional_attributes
OPTIONAL ;optional a‘;tributes}) 5 MERGE \(record)l <= [l-extractedhron]
- 6 - ($node_name)

Listing 1.1: Transformation rule patterns and the generated queries to assign
labels to record nodes (a) and to create semantic nodes (b).

it is retrieved. (E.g., Entity nodes with the same identifier are merged.) Laslty,
a extractedFrom relation from the record to the semantic node is merged.

Semantic Relationship Creation rules. Relationships can be created in two
different ways. First, two different semantic nodes are related if they have been
extracted from the same Record node. Fig. [§ visually shows that the actsOn rela-
tionship can be created between Event and Book nodes that are extracted from
the same :EventRecord:BookRecord node. Second, nodes can be related based on
a subgraph of the semantic layer. For example, domain knowledge is used to
determine the coreference constraints indicating that a Member can only borrow
a Book from the catalog of a Library if they are a member of that Library (Fig. .

Relationship transformation rule Relationship transformation rule
based on provenance based on relationships

‘Book - - > EVentRecord; =0 - | :Member: "> borrowed: % Book « « - --- - :

tBookRecord ; -] T FEZastio-- - 1 Legend
]‘ < .L|brary CREATE

Fig. 8: Example of actsOn and memberOf transformation rules.

5 Conclusion and demonstration

This paper explored the development of a reference implementation for OCED.
We proposed a three-layer approach to create a semantic-aware representation
and storage system for OCED. We developed OCED-PG, a declarative ELT
framework, that maps the raw data to a corresponding EKG, using the semantic
header as a basis. The method is robust and extendable due to the flexibility of
PG schema and property graphs allowing for alterations or expansions to OCED.

OCED-PG is implemented in a Python library called PromG. It is designed to
automatically generate Cypher queries against a Neo4j instance to transform raw
data into the semantic domain. We have identified patterns in the transformation

Object-Centric Event Data Models in EKG 11

Data set Source #node types #edge Memory Time
Size (GB) :Event :Activity :Entity :Attribute :Relation types (GB) (mins)

Library 0.002 1 1 3 1 1 7 1 0.5
BPIC’14 0.08 2 1 7 0 0 11 1 7.7
BPIC’15 0.11 1 1 3 0 0 7 1 4.4
BPIC’16 1.06 4 1 13 0 0 17 5 162.4
BPIC’17 0.29 1 1 5 0 0 4 1 19.7
BPIC’19 0.52 1 1 7 0 0 8 5 31.2
SAP 0.01 1 1 4 0 2 5 1 2.0
Manufacturing 0.03 1 1 4 0 0 1 1 3.7

Table 2: Type information of EKGs and execution time for 8 datasets

rules, providing a simple interface (i.e. the semantic header) for analysts to
manipulate event data. We tested OCED-PG on eight different data setEEI by
constructing an EKG for each dataset based on a semantic header, demonstrating
the feasibility of our approach. Tab. [2] gives an overview of the data sets, the
domain knowledge applied, the memory allocated, and the execution time.

Our implementation of OCED is not intended to be a data transport format
but is designed for analysis. We have established key concepts for specifying
semantic headers of process event data, allowing analysts to customize the se-
mantic model for the specific process and analysis without compromising the
data storage format. EKGs have already been demonstrated to be beneficial for
further enrichment and analysis of the data. Previous research has applied EKGs
for multi-entity process discovery and conformance checking [12], task identifica-
tion [I5], concept drift detection, and inference of missing entity identifiers [17].

Our work serves as a proof-of-concept, but it has certain limitations. First,
the semantic header only allows queries to enrich nodes and to create nodes and
relationships from existing nodes and subgraphs; any other semantic inference
will require extensions to the semantic header. Second, PG-schema is used as
a conceptual idea, but neither the semantic header nor the database actually
implements it. Third, the implementation is not optimized for efficiency or per-
formance; for instance, since we perform a query for each entry in the semantic
header, we have to loop over all the record nodes for each entry in the worst case.
Lastly, our method does not take into account streaming data or a standardized
import/export for data in an OCED data transport format.

Acknowledgement. The research underlying this paper was partially sup-
ported by AutoTwin EU GA n. 101092021.

References

1. van der Aalst, W.M.P.: Object-centric process mining: Dealing with divergence and
convergence in event data. In: SEFM 2019. LNCS, vol. 11724, pp. 3-25. Springer
(2019)

2. van der Aalst, W.M.P.: Twin transitions powered by event data - using object-
centric process mining to make processes digital and sustainable. In: ATAED 2023.
CEUR Workshop Proceedings, vol. 3424. CEUR-WS.org (2023)

2 See |https://zenodo. org/record/8296559

https://zenodo.org/record/8296559

12

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

A. Swevels et al.

van der Aalst, W.M.P., Berti, A.: Discovering object-centric petri nets. Fundam.
Informaticae 175(1-4), 1-40 (2020)

Angles, R., Gutierrez, C.: Survey of graph database models. ACM Computing
Surveys 40(1), 1:1-1:39 (2008)

Angles, R., et al.: Pg-schema: Schemas for property graphs. ACM on Management
of Data (PACMMOD, 2023) 1(2), 198:1-198:25 (2023)

Artale, A., Kovtunova, A., Montali, M., van der Aalst, W.M.P.: Modeling and rea-
soning over declarative data-aware processes with object-centric behavioral con-
straints. In: BPM 2019. LNCS, vol. 11675, pp. 139-156. Springer (2019)
Barenholz, D., Montali, M., Polyvyanyy, A., Reijers, H.A., Rivkin, A., van der
Werf, J.M.E.M.: There and back again - on the reconstructability and rediscover-
ability of typed jackson nets. In: PETRI NETS 2023. LNCS, vol. 13929, pp. 37-58.
Springer (2023)

Bonifati, A., Fletcher, G.H.L., Voigt, H., Yakovets, N.: Querying Graphs. Synthesis
Lectures on Data Management, Morgan & Claypool Publishers (2018)

Calvanese, D., Jans, M., Kalayci, T.E., Montali, M.: Extracting event data from
document-driven enterprise systems. In: CAiSE 2023. LNCS, vol. 13901, pp. 193—
209. Springer (2023)

Calvanese, D., Kalayci, T.E., Montali, M., Santoso, A.: OBDA for log extraction
in process mining. In: Reasoning Web (RW, 2017). LNCS, vol. 10370, pp. 292-345.
Springer (2017)

Dumas, M., Fournier, F., Limonad, L., et al.: Al-augmented business process man-
agement systems: A research manifesto. ACM Trans. Manag. Inf. Syst. 14(1),
11:1-11:19 (2023)

Fahland, D.: Process mining over multiple behavioral dimensions with event knowl-
edge graphs. In: Process Mining Handbook, vol. 448, pp. 274-319. Springer (2022)
Ghahfarokhi, A.F., Park, G., Berti, A., van der Aalst, W.M.P.: OCEL: A standard
for object-centric event logs. In: ADBIS 2021 Short Papers. Communications in
Computer and Information Science, vol. 1450, pp. 169-175. Springer (2021)
Hogan, A., et al.: Knowledge graphs. ACM Comput. Surv. 54(4), 71:1-71:37 (2022)
Klijn, E.L., Mannhardt, F., Fahland, D.: Classifying and detecting task execu-
tions and routines in processes using event graphs. In: BPM Forum. pp. 212-229.
Springer International Publishing, Cham (2021)

Lu, X., Nagelkerke, M., van de Wiel, D., Fahland, D.: Discovering interacting
artifacts from ERP systems. IEEE Trans. Serv. Comput. 8(6), 861-873 (2015)
Swevels, A., Dijkman, R., Fahland, D.: Inferring missing entity identifiers from
context using event knowledge graphs. In: BPM 2023. LNCS (2023)

Wynn, M.T., Lebherz, J., van der Aalst, W.M.P., Accorsi, R., Ciccio, C.D., Ja-
yarathna, L., Verbeek, H.M.W.: Rethinking the input for process mining: Insights
from the XES survey and workshop. In: ICPM 2023 Workshops. LNBIP, vol. 433,
pp- 3—-16. Springer

Xiao, G., Calvanese, D., Kontchakov, R., Lembo, D., Poggi, A., Rosati, R., Za-
kharyaschev, M.: Ontology-based data access: A survey. In: Artificial Intelligence
(IJCAI, 2018). pp. 5511-5519. ijcai.org (2018)

Xiao, G., Ding, L., Cogrel, B., Calvanese, D.: Virtual knowledge graphs: An
overview of systems and use cases. Data Intell. 1(3), 201-223 (2019)

Xiong, J., Xiao, G., Kalayci, T.E., Montali, M., Gu, Z., Calvanese, D.: A virtual
knowledge graph based approach for object-centric event logs extraction. LNBIP,
vol. 468, pp. 466-478. Springer (2022)

	Implementing Object-Centric Event Data Models in Event Knowledge Graphs

